Analysis of Tool Tip Dynamic Characteristics and Stability Prediction for Robotic Milling Tasks
YE Songtao1,2, YAN Sijie1,2, LI Wentao1, XU Xiaohu3, LU Jialin4
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074; 2. Blade Intelligent Manufacturing Division, HUST-Wuxi Research Institute, Wuxi 214174; 3. The Institute of Technological Sciences, Wuhan University, Wuhan 430072; 4. Gurit Tooling (Taicang) Co., Ltd., Taicang 215400
YE Songtao, YAN Sijie, LI Wentao, XU Xiaohu, LU Jialin. Analysis of Tool Tip Dynamic Characteristics and Stability Prediction for Robotic Milling Tasks[J]. Journal of Mechanical Engineering, 2022, 58(17): 261-275.
[1] YUAN Lei,PAN Zengxi,DING Donghong,et al. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism[J]. IEEE/ASME Transactions on Mechatronics,2018,23(5):2240-2251. [2] TLUSTY J,POLACEK M. The stability of machine tools against self-excited vibrations in machining[J]. Proceedings of the ASME International,1963,1(1):454-465. [3] TOBIAS S. The chatter of lathe tools under orthogonal cutting conditions[J]. Trans ASME,1958,80(1):1079-1085. [4] RIGELSFORD J. Manufacturing automation:Metal cutting mechanics,machine tool vibrations,and CNC design[J]. Industrial Robot,2004,31(1):B84. [5] YUAN Lei,SUN Shuaishuai,PAN Zengxi,et al. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber[J]. Mechanical:Systems and Signal Processing,2019,117(2):221-237. [6] 丁烨. 铣削动力学—稳定性分析方法与应用[D]. 上海:上海交通大学,2011. DING Ye. Milling dynamics—stability analysis methods and applications[D]. Shanghai:Shanghai Jiao Tong University,2011. [7] 廖启豪,王玲,殷国富. 基于RCSA的刀尖频响函数预测方法[J]. 工具技术,2019,53(12):4. LIAO Qihao,WANG Ling,YIN Guofu. Frequency response function prediction method of tool tip based on RCSA[J]. Tool Engineering,2019,53(12) :4. [8] ZHANG Jun,LI Jianhui,XIE Zhennan,et al. Rapid dynamics prediction of tool point for bi-rotary head five-axis machine tool[J]. Precision Engineering,2016,48(4):203-215. [9] JI Yulei,BI Qingzhen,ZHANG Shaokun,et al. A new receptance coupling substructure analysis methodology to predict tool tip dynamics[J]. International Journal of Machine Tools and Manufacture,2018,126(12):18-26. [10] MEJRI S,GAGNOL V,LAURENT L,et al. Dynamic characterization of machining robot and stability analysis[J]. The International Journal of Advanced Manufacturing Technology,2016,82(1-4):351-359. [11] PAN Zengxi,ZHANG Hui,ZHU Zhenqi,et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology,2006,173(3):301-309. [12] GIENKE O,PAN Z,YUAN L,et al. Mode coupling chatter prediction and avoidance in robotic machining process[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):2103-2116. [13] MOUSAVI S,GAGNOL V,BOUZGARROU C,et al. Dynamic modeling and stability prediction in robotic machining[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9-12):3053-3065. [14] MOUSAVI S,GAGNOL V,BOUZGARROU C,et al. Stability optimization in robotic milling through the control of functional redundancies[J]. Robotics and Computer-Integrated Manufacturing,2018,50(9):181-192. [15] WU Long,DONG Chenglin,WANG Guofeng,et al. An approach to predict lower-order dynamic behaviors of a 5-DOF hybrid robot using a minimum set of generalized coordinates[J]. Robotics and Computer-Integrated Manufacturing,2021,67(6):102024. [16] NGUYEN V,CVITANIC T,MELKOTE S. Data-driven modeling of the modal properties of a six-degrees-of-freedom industrial robot and its application to robotic milling[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2019,141(12):1-12. [17] NGUYEN V,MELKOTE S. Identification of industrial robot frequency response function for robotic milling using operational modal analysis[J]. Procedia Manufacturing,2020,48(3):154-158. [18] NGUYEN V,MELKOTE S. Hybrid statistical modelling of the frequency response function of industrial robots[J]. Robotics and Computer-Integrated Manufacturing,2021,70(8):102134. [19] CHEN Chen,PENG Fangyu,YAN Rong,et al. Posture-dependent stability prediction of a milling industrial robot based on inverse distance weighted method[J]. Procedia Manufacturing,2018,17(6):993-1000. [20] CHEN Chen,PENG Fangyu,YAN Rong,et al. Rapid prediction of posture-dependent FRF of the tool tip in robotic milling[J]. Robotics and Computer-Integrated Manufacturing,2020,64(9):101906. [21] ALTINTAŞ Y,BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals,1995,44(1):357-362. [22] MERDOL D,ALTINTAS Y. Multi frequency solution of chatter stability for low immersion milling[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2004,126(3):459-466. [23] INSPERGER T,STÉPÁN G. Semi-discretization method for delayed systems[J]. International Journal for Numerical Methods in Engineering,2002,55(5):503-518. [24] DING Ye,ZHU Limin,ZHANG Xiaojian,et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture,2010,50(5):502-509. [25] DING Ye,ZHU Limin,ZHANG Xiaojian,et al. Numerical integration method for prediction of milling stability[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2011,133(3):031005. [26] MIRIMAND N,BILLAUD F,LELEUX F,et al. Identification of structural modal parameters by dynamic tests at a single point[J]. Shock and Vibration Bull,1976,46(5):197-212.