[1] KLEMENT W,WILLENS R,DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature,1960,187(4740):869-870. [2] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177-351. WANG Weihua. The nature and properties of amorphous substance[J]. Progress in Physics,2013,33(5):177-351. [3] ZENG Qiaoshi,SHENG Hongwei,DING Yang,et al. Long-range topological order in metallic glass[J]. Science,2011,332(6036):1404-1406. [4] 程江波,梁秀兵,王泽华,等. 油润滑条件下FeBSiNb非晶涂层磨损性能研究[J]. 摩擦学学报,2012,32(2):119-125. CHENG Jiangbo,LIANG Xiubing,WANG Zehua,et al. Wear behavior of FeBSiNb metallic glass coating under oil lubraication[J]. Tribology,2012,32(2):119-125. [5] 陈伟荣,王英敏,羌建兵,等. Zr基大块非晶合金的摩擦磨损性能[J]. 摩擦学学报,2003,23(1):14-17.CHEN Weirong,WANG Yingmin,QIANG Jianbing,et al. Friction and wear characteristics of Zr-based bulk metallic glasses[J]. Tribology,2003,23(1):14-17. [6] 寇生中,赵文升,高忙忙,等. Cr、Ni对Cu50Zr42Al8非晶合金摩擦磨损性能的影响[J]. 特种铸造及有色合金,2008,28(2):83-86. KOU Shengzhong,ZHAO Wensheng,GAO Mangmang,et al. Effect of Cr and Ni on tribological properties of Cu50Zr42Al8 amorphous alloy[J]. Special Casting & Nonferrous Alloys,2008,28(2):83-86. [7] 肖华星,陈光,喇培清. 铁基大块非晶合金的摩擦磨损性能研究[J]. 摩擦学学报,2006,26(2):140-144. XIAO Huaxing,CHEN Guang,LA Peiqing. On friction and wear behavior of Fe-based bulk amorphous alloy[J]. Tribology,2006,26(2):140-144. [8] CAI Chuning,ZHANG Cheng,SUN Yingsui,et al. ZrCuFeAlAg thin film metallic glass for potential dental applications[J]. Intermetallics,2017,86:80-87. [9] ZHAO Yangyang,YE Youxiong,LIU Chenze,et al. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique[J]. Intermetallics,2019,113:106561. [10] LOUZGUINE-LUZGIN D V,NGUYEN H K,NAKAJIMA K,et al. A study of the nanoscale and atomic-scale wear resistance of metallic glasses[J]. Materials Letters,2016,185:54-58. [11] LOUZGUINE-LUZGIN D V,ITO M,KETOV S V,et al. Exceptionally high nanoscale wear resistance of a Cu47Zr45Al8 metallic glass with native and artificially grown oxide[J]. Intermetallics,2018,93:312-317. [12] KANG Sangjun,RITTGEN K T,KWAN S G,et al. Importance of surface oxide for the tribology of a Zr-based metallic glass[J]. Friction,2017,5(1):115-122. [13] CARON A,LOUZGUINE-LUZGUIN D V,BENNEWITZ R. Structure vs chemistry:Friction and wear of Pt-Based metallic surfaces[J]. ACS Applied Materials & Interfaces,2013,5(21):11341-11347. [14] LI Rui,CHEN Zheng,DATYE A,et al. Atomic imprinting into metallic glasses[J]. Communications Physics,2018,1(75):1-6. [15] YU Jiaxin,DATYE A,CHEN Zheng,et al. Atomic-scale homogeneous plastic flow beyond near-theoretical yield stress in a metallic glass[J]. Communications Materials,2021,2(1):22. [16] SCHROERS J. Condensed-matter physics:Glasses made from pure metals[J]. Nature,2014,512(7513):142-143. [17] 余家欣,钱林茂. 一种改进的原子力显微镜摩擦力标定方法[J]. 摩擦学学报,2007,27(5):472-476. YU Jiaxin,QIAN Linmao. An improved calibration method for friction force in atomic force microscopy[J]. Tribology,2007,27(5):472-476. [18] YU Jiaxin,QIAN Linmao,YU Bingjun,et al. Nanofretting behaviors of monocrystalline silicon (100) against diamond tips in atmosphere and vacuum[J]. Wear,2009,267(1):322-329. [19] MEDINA M A,ACIKGOZ O,RODRIGUEZ A,et al. Comparative tribological properties of Pd-,Pt-,and Zr-based bulk metallic glasses[J]. Lubricants,2020,8(9):85. [20] BEAKE B D,HARRIS A J,LISKIEWICZ T W,et al. Friction and electrical contact resistance in reciprocating nano-scale wear testing of metallic materials[J]. Wear,2021,474-475:203866. [21] MADGE S V,CARON A,GRALLA R,et al. Novel W-based metallic glass with high hardness and wear resistance[J]. Intermetallics,2014,47:6-10. [22] ZHAO Shuji,SHI Songlin,XIA Kailun,et al. Scratching of graphene-coated Cu substrates leads to hardened Cu interfaces with enhanced lubricity[J]. ACS Applied Nano Materials,2020,3(2):1992-1998. [23] BOWDEN F P,TABOR D F. The friction and lubrication of solids[J]. American Journal of Physics,1951,19:428. [24] YU Jiaxin,HU Hailong,JIA Fei,et al. Quantitative investigation on single-asperity friction and wear of phosphate laser glass against a spherical AFM diamond tip[J]. Tribology International,2015,81:43-52. [25] SCHWARZ U D,ZWORNER O,KOSTER P,et al. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds[J]. Physical Review B,1997,56(11):6987-6996. [26] SCHUH C A,HUFNAGEL T C,RAMAMURTY U. Mechanical behavior of amorphous alloys[J]. Acta Materialia,2007,55(12):4067-4109. [27] YAVARI A R,LEWANDOWSKI J J,ECKERT J. Mechanical properties of bulk metallic glasses[J]. Mrs Bulletin,2007,32(8):635-638. [28] ARGON A S. Plastic deformation in metallic glasses[J]. Acta Metallurgica,1979,27(1):47-58. [29] BEI Hongbin,XIE Suijing,GEORGE E P. Softening caused by profuse shear banding in a bulk metallic glass[J]. Physical Review Letters,2006,96(10):105503. [30] PAN Jie,CHEN Qi,LIU Lingbei,et al. Softening and dilatation in a single shear band[J]. Acta Materialia,2011,59(13):5146-5158. [31] 于洲,余家欣,袁卫锋,等. 脆性材料在韧性域内的往复纳米划痕深度预测研究[J]. 机械工程学报,2021,57(15):246-254. YU Zhou,YU Jiaxin,YUAN Weifeng,et al. Analytical prediction of reciprocating nanoscratch depth for brittle materials in the ductile regime[J]. Journal of Mechanical Engineering,2021,57(15):246-254. [32] BROSTOW W,CHONKAEW W,RAPOPORT L,et al. Grooves in scratch testing[J]. Journal of Materials Research,2011,22(9):2483-2487. [33] FU Jiacheng,HE Hongtu,YUAN Weifeng,et al. Towards a deeper understanding of nanoscratch-induced deformation in an optical glass[J]. Applied Physics Letters,2018,113(3):031606. [34] MEYERS M,CHAWLA K. Mechanical behavior of materials[M]. Cambridge:Cambridge University Press,2008. [35] DENG Chuang,SCHUH C A. Atomistic mechanisms of cyclic hardening in metallic glass[J]. Applied Physics Letters,2012,100:251909. [36] WANG Z T,PAN Jie,LI Y,et al. Densification and strain hardening of a metallic glass under tension at room temperature[J]. Physical Review Letters,2013,111(13):135504. [37] PACKARD C E,WITMER L M,SCHUH C A. Hardening of a metallic glass during cyclic loading in the elastic range[J]. Applied Physics Letters,2008,92(17):4067. [38] ZHAO Dan,ZHAO Hongwei,ZHU Bo,et al. Investigation on hardening behavior of metallic glass under cyclic indentation loading via molecular dynamics simulation[J]. Applied Surface Science,2017,416:14-23. [39] LOUZGUINE-LUZGIN D V,TRIFONOV A S,IVANOV Y P,et al. Shear-induced chemical segregation in a Fe-based bulk metallic glass at room temperature[J]. Scientific Reports,2021,11(1):13650. [40] SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metallurgica,1976,25(4):407-415. [41] YANG Bing,RIESTER L,NIEH T. Strain hardening and recovery in a bulk metallic glass under nanoindentation[J]. Scripta Materialia,2006,54(7):1277-1280. [42] AL-AQEELI N. Strengthening behavior due to cyclic elastic loading in Pd-based metallic glass[J]. Journal of Alloys and Compounds,2011,509(26):7216-7220. |