Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (3): 221-234.doi: 10.3901/JME.2022.03.221
Special Issue: 《机械工程学报》近期佳作集锦 | “双碳”绿色制造技术
Previous Articles Next Articles
WANG Jinlong1, GAO Sibo2, YANG Yuxing1, BAO Yongjie1, ZHANG Yuanliang3
Received:
2021-03-10
Revised:
2021-09-16
Online:
2022-02-05
Published:
2022-03-19
CLC Number:
WANG Jinlong, GAO Sibo, YANG Yuxing, BAO Yongjie, ZHANG Yuanliang. Review of the Remanufacturability Evaluation of Mechanical Equipment[J]. Journal of Mechanical Engineering, 2022, 58(3): 221-234.
[1] 曹华军,李洪丞,曾丹,等. 绿色制造研究现状及未来发展策略[J]. 中国机械工程,2020,31(2):135-144. CAO Huajun,LI Hongcheng,ZENG Dan,et al. The state-of-art and future development strategies of green manufacturing[J]. China Mechanical Engineering,2020,31(2):135-144. [2] 张明. 离心压缩机叶轮材料FV520B超高周疲劳行为与机理研究[D]. 济南:山东大学,2015. ZHANG Ming. Research on fatigue behavior and mechanism of FV520B in very high cycle regime[D]. Jinan:Shandong University,2015. [3] 刘赟,徐滨士,史佩京,等. 废旧产品再制造性评估指标[J]. 中国表面工程,2011,24(5):94-99. LIU Yun,XU Binshi,SHI Peijing,et al. Assessment indexes of used products remanufacturability[J]. China surface engineering,2011,24(5):94-99. [4] 龚青山. 面向再制造的机械装备多目标优化设计研究[D]. 武汉:武汉科技大学,2019. GONG Qingshan. Research on Multi-objective optimization design method of mechanical equipment design for remanufacturing[D]. Wuhan:Wuhan University of Science and Technology,2019. [5] 徐滨士. 装备绿色再制造工程及其发展前景[J]. 装备指挥技术学院学报,2003(1):1-4. XU Binshi. Remanufacture engineering for equipment and its development[J]. Journal of the Academy of Equipment Command& Technology,2003(1):1-4. [6] 全国绿色制造技术标准化技术委员会. GB/T 32811-2016,机械产品再制造性评价技术规范[S]. 北京:标准出版社,2016. National Green Manufacturing Technology Standardization Technical Committee. GB/T 32811-2016, Technical specification for remanufacturability evaluation of mechanical products[S]. Beijing:Standards Press,2016. [7] 张宗翔,肖素梅,石宇强,等. 基于产品特性的可再制造性评价研究[J]. 机械制造与自动化,2010,39(1):74-76. ZHANG Zongxiang,XIAO Sumei,SHI Yuqiang,et al. Assessment of remanufactureability based on property of product[J]. Machine Building & Automation,2010,39(1):74-76. [8] LUND R. Remanufacturing[J]. Technology Review,1984,87(2):18-23. [9] 刘晓叙,张海秀. 产品可再制造性判断准则研究[J]. 四川理工学院学报,2007(6):76-78. LIU Xiaoxu,ZHANG Haixiu. Study on the criteria for judging the remanufacture of products[J]. Journal of Sichuan University of Science & Engineering,2007(6):76-78. [10] 杜彦斌,廖兰. 基于失效特征的机械零部件可再制造度评价方法[J]. 计算机集成制造系统,2015,21(1):135-142. DU Yanbin,LIAO Lan. Remanufacturability evaluation method for mechanical parts based on failure features[J]. Computer Integrated Manufacturing Systems,2015,21(1):135-142. [11] 向红. 废旧机电产品可再制造性评价研究及应用[D]. 武汉:武汉科技大学,2016. XIANG Hong. Research on remanufacturability evaluation for used electromechanical products and its application[D]. Wuhan:Wuhan University of Science and Technology,2016. [12] 张旭刚. 废旧机床再制造性评估与再制造工艺方案决策方法研究[D]. 武汉:武汉科技大学,2014. ZHANG Xugang. Study on remanufacturability evaluation and remanufacturing process decision methods of machine tool[D]. Wuhan:Wuhan University of Science and Technology,2014. [13] 蒋小利. 基于多寿命特征的废旧机电产品可再制造性评价方法研究[D]. 武汉:武汉科技大学,2014. JIANG Xiaoli. Research on remanufacturability evaluation method for used electromechanical products based on multiple life characteristics[D]. Wuhan:Wuhan University of Science and Technology,2014. [14] 游雄雄. 矿冶典型零部件退化状态识别与剩余寿命预测及可再制造性评估[D]. 赣州:江西理工大学,2015. YOU Xiongxiong. Remanufacturing assessment of the key technology based on waste parts degradation status and remaining life prediction[D]. Ganzhou:Jiangxi University of Science and Technology,2015. [15] 贾玄彬. TBM刀盘裂纹萌生寿命及再制造性评价研究[D]. 天津:天津大学,2018. JIA Xuanbin. Research on crack initiation life and remanufacture evaluation of TBM cutter-head[D]. Tianjin:Tianjin University,2018. [16] 刘建琴,贾玄彬,郭伟,等. 基于裂纹萌生的TBM刀盘地质匹配及失效研究[J]. 天津大学学报,2017,50(11):1148-1153. LIU Jianqin,JIA Xuanbin,GUO Wei,et al. Research on TBM cutter-head geological matching and failure based on crack initiation[J]. Journal of Tianjin University,2017,50(11):1148-1153. [17] 侴露. 产品剩余寿命预测方法与可再制造性评估研究[D]. 沈阳:东北大学,2008. CHOU Lu. The residual life prediction method and can be reassessment study of manufacturing[D]. Shenyang:Northeastern University,2008. [18] 张国庆. 零件剩余疲劳寿命预测方法与产品可再制造性评估研究[D]. 上海:上海交通大学,2007. ZHANG Guoqing. Study on residual fatigue life prediction methods of remanufacturing parts and assessment of remanufacturability[D]. Shanghai:Shanghai Jiao Tong University,2007. [19] 刘行. 面向再制造的报废汽车发动机曲轴剩余疲劳寿命预测及再设计[D]. 呼和浩特:内蒙古工业大学,2018. LIU Hang. Residual fatigue life prediction and redesign of scrap automobile enginee crankshaft for remanufacturing[D]. Hohhot:Inner Mongolia University of Technology,2018. [20] 张国庆,荆学东,浦耿强,等. 汽车发动机可再制造性评价[J]. 中国机械工程,2005(8):739-742. ZHANG Guoqing,JING Xuedong,PU Gengqiang,et al. Assessment on remanufacturability of the automobile engines[J]. China Mechanical Engineering,2005(8):739-742. [21] 张国庆,荆学东,浦耿强,等. 产品可再制造性评价方法与模型[J]. 上海交通大学学报,2005(9):1431-1436. ZHANG Guoqing,JING Xuedong,PU Gengqiang,et al. The assessment method and model of remanufacturability[J]. Journal of Shanghai Jiaotong University,2005(9):1431-1436. [22] 王玉琳,胡锦强,柯庆镝,等. 基于轴心轨迹特征的发动机曲轴再制造性分析方法[J]. 中国机械工程,2017,28(13):1601-1607. WANG Yulin,HU Jinqiang,KE Qingdi,et al. Remanufacturability analysis method for engine crankshafts based on shaft center trajectory[J]. China Mechanical Engineering,2017,28(13):1601-1607. [23] 陈海峰. 退役机床齿轮零件剩余疲劳寿命预测研究及其可再制造性评估[D]. 重庆:重庆大学,2014. CHEN Haifeng. Study on gears' remaining fatigue life prediction and remanufacturability of used machine tool[D]. Chongqing:Chongqing University,2014. [24] 崔翔,张秀芬,刘佳. 基于失效的退役曲轴再制造性层次评价[J]. 机械设计与研究,2020,36(4):138-141. CUI Xiang,ZHANG Xiufen,LIU Jia. Hierarchy evaluation process of remanufacturability of retired crankshaft based on failure[J]. Machine Design and Research,2020,36(4):138-141. [25] 朱胜,徐滨士,姚巨坤. 再制造设计基础及方法[J]. 中国表面工程,2003,16(3):27-31. ZHU Sheng,XU Binshi,YAO Jukun. Study on the foundation and method of remanufacturing design[J]. China Surface Engineering,2003,16(3):27-31. [26] 姚巨坤,朱胜,崔培枝. 面向再制造全过程的再制造设计[J]. 机械工程师,2004(1):27-29. YAO Jukun,ZHU Sheng,CUI Peizhi. Remanufacturing Design Facing to Total Remanufacturing Process[J]. Mechanical Engineer,2004(1):27-29. [27] 朱胜,姚巨坤. 装备再制造设计及其内容体系[J]. 中国表面工程,2011,24(4):1-6. ZHU Sheng,YAO Jukun. Equipment remanufacturing design and its content system[J]. China Surface Engineering,2011,24(4):1-6. [28] ONG S K,FANG H C,NEE A. A design feature-based approach for product remanufacturability assessment and analysis[J]. Procedia CIRP,2016,53:15-20. [29] FANG H C,ONG S K,NEE A Y C. An integrated approach for product remanufacturing assessment and planning[J]. Procedia CIRP,2016,40:262-267. [30] FANG H C,ONG S K,NEE A. Product remanufacturability assessment and implementation based on design features[J]. Procedia CIRP,2015,26:571-576. [31] 刘韶光. 基于物元模型的汽车曲轴可再制造性评价研究[J]. 公路与汽运,2010(1):1-4. LIU Shaoguang. Research on the remanufacturability evaluation of automobile crankshaft based on matter-element model[J]. Highway and Transportation, 2010(1):1-4. [32] 刘韶光. 汽车曲轴再制造评价技术研究[D]. 武汉:武汉理工大学,2010. LIU Shaoguang. Research on the evaluation technique of vehicle crankshaft remanufacturing[D]. Wuhan:Wuhan University of Technology,2010. [33] 赵旭,张闻雷,陈东,等. 基于设计矩阵和熵的可再制造性量化评价方法[J]. 机械设计,2015,32(8):46-50. ZHAO Xu,ZHANG Wenlei,CHEN Dong,et al. Quantitative assessment method of remanufacturability based on design structure matrices and entropy[J]. Journal of Machine Design,2015,32(8):46-50. [34] 姚巨坤,朱胜,崔培枝,等. 再制造性工程[M]. 北京:机械工业出版社,2020. YAO Jukun,ZHU Sheng,CUI Peizhi,et al. Remanufacturability engineering[M]. Beijing:China Machine Press,2020. [35] 薛怀坤,由世俊,张欢,等. 冷水机组可再制造性综合评价研究[J]. 暖通空调,2014,44(8):12-17. XUE Huaikun,YOU Shijun,ZHANG Huan,et al. Study on comprehensive evaluation of chiller remanufacturing[J]. Heating Ventilating & Air Conditioning,2014,44(8):12-17. [36] 杨琪,张小燕. 废旧机床再制造评价模型构建[J]. 价值工程,2017,36(32):99-100. YANG Qi,ZHANG Xiaoyan. Construction of evaluation model for remanufacturing of waste machine tools[J]. Value Engineering,2017,36(32):99-100. [37] 李丽,金嘉琦,姜兴宇,等. 废旧零部件可再制造质量评价与分类研究[J]. 组合机床与自动化加工技术,2017(9):45-49. LI Li,JIN Jiaqi,JIANG Xingyu,et al. Research on quality evaluation and classification for used parts remanufacturing[J]. Modular Machine Tool & Automatic Manufacturing Technique,2017(9):45-49. [38] 郭节琴,刘渤海,丰奇倩,等. 机电产品再制造性评价研究概况[C]//第十四届(2019)中国管理学年会,2019:6. GUO Jieqin, LIU Bohai, FENG Qiqian, et al. Overview of research on remanufacturability evaluation of mechanical and electrical products[C]//The Fourteenth (2019) China Management Conference, 2019:6. [39] 刘明生. 汽车曲轴可再制造性评价方法[J]. 装备制造技术,2016(7):114-118. LIU Mingsheng. Evaluation Method of Remanufacturing Automotive Crankshaft[J]. Equipment Manufacturing Technology,2016(7):114-118. [40] ZHANG Xugang,TANG Yuanjie,ZHANG Hua,et al. Remanufacturability evaluation of end-of-life products considering technology,economy and environment:A review[J]. Science of The Total Environment,2020,764(5):142922. [41] 钟骏杰,范世东,姚玉南,等. 再制造性综合评估研究[J]. 中国机械工程,2003,24:47-50,5. ZHONG Junjie,FAN Shidong,YAO Yunan,et al. Research on synthetical assessment for remanufacturability[J]. China Mechanical Engineering,2003,24:47-50,5. [42] ZHANG Xugang,AO Xiuyi,JIANG Zhigang,et al. A remanufacturing cost prediction model of used parts considering failure characteristics[J]. Robotics and Computer Integrated Manufacturing,2019,59:291-296. [43] 陈胜利,张朝嘉. 考虑环境性能和再制造能力的闭环供应链讨价还价协调策略[J]. 计算机集成制造系统,2019,25(5):1283-1295. CHEN Shengli,ZHANG Chaojia. Bargaining coordination strategy of closed-loop supply chain with consideration of environmental performance and remanufacturability[J]. Computer Integrated Manufacturing Systems,2019,25(5):1283-1295. [44] LIU Qingtao,SHANG Ziyu,DING Kai,et al. Multi-process routes based remanufacturability assessment and associated application on production decision[J]. Journal of Cleaner Production,2019:240. [45] 毛果平,朱有为,吴超. 废旧机电产品再制造性评估模型研究[J]. 现代制造工程,2009(6):114-118. MAO Guoping,ZHU Youwei,WU Chao. A remanufacturability assessing model for waste electromechanical products[J]. Modern Manufacturing Engineering,2009(6):114-118. [46] 韩夏冰. 工程机械产品可再制造性与金属腐蚀程度评价研究[D]. 天津:天津大学,2012. HAN Xiabing. The assessment research of remanufacturability and the evaluation of metal corrosion degree[D]. Tianjin:Tianjin University,2012. [47] 申立艳. 机电产品的可再制造性评价研究[D]. 济南:山东大学,2008. SHEN Liyan. Research of evaluating the remanufacturingability of electromechanical products[D]. Jinan:Shandong University,2008. [48] 龚青山. 面向再制造的机械装备多目标优化设计研究[D]. 武汉:武汉科技大学,2019. GONG Qingshan. Research on multi-objective optimization design method of mechanical equipment design for remanufacturing[D]. Wuhan:Wuhan University of Science and Technology,2019. [49] 时君丽. 基于LCSA的机械装备多维度可再制造性分析方法研究[D]. 大连:大连理工大学,2017. SHI Junli. Analysis method research on multi-dimensional remanufacturability of mechanical equipment based on LCSA theory[D]. Dalian:Dalian University of Technology,2017. [50] SHI Junli,LI Tao,LIU Zhichao. A three-dimensional method for evaluating the remanufacturability of used engines[J]. Int. J. of Sustainable Manufacturing,2015,3(4). [51] 任仲贺,武美萍,龚玉玲,等. 机械零部件可再制造性评价模型研究与应用[J]. 机械科学与技术,2019,38(2):244-252. REN Zhonghe. WU Meiping,GONG Yuling,et al. Research and application of remanufacturability evaluation method for mechanical parts[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(2):244-252. [52] 刘丽,王辉,高蕾娜. 废旧机床绿色再制造性评价模型研究[J]. 成都大学学报,2017,36(3):296-298. LIU Li,WANG Hui,GAO Leina. Evaluation Model Research on Green Remanufacturability of Used Machine Tools[J]. Journal of Chengdu University,2017,36(3):296-298. [53] 付忠琦,杜朔,赵家宝,等. 废旧机床再制造性评估与再制造工艺方案设计[J]. 科技与企业,2016(7):252. FU Zhongqi, DU Shuo, ZHAO Jiabao, et al. Remanufacturability evaluation and remanufacturing process design of scrap machine tools[J]. Science and Technology and Enterprise,2016(7):252 [54] 李丽. 废旧机床再制造设计质量控制方法研究[D]. 沈阳:沈阳工业大学,2018. LI Li. Research on remanufacturing design quality control method for the used machine tools[D]. Shenyang:Shenyang University of Technology,2018. [55] 李丽,金嘉琦,姜兴宇,等. 废旧零部件可再制造质量评价与分类研究[J]. 组合机床与自动化加工技术,2017(9):45-49. LI Li,JIN Jiaqi,JIANG Xingyu,et al. Research on quality evaluation and classification for used parts remanufacturing[J]. Modular Machine Tool & Automatic Manufacturing Technique,2017(9):45-49. [56] 蒋小利,江志刚,张华,等. 基于实例推理的废旧零部件可再制造性评价模型及应用[J]. 现代制造工程,2013(12):6-9. JIANG Xiaoli,JIANG Zhigang,ZHANG Hua,et al. A case-based reasoning model for evaluating remanufacturability of used parts and its application[J]. Modern Manufacturing Engineering,2013(12):6-9. [57] 卢超,潘尚峰,孙江宏. 重型机床基础件再制造评价指标体系的建立及指标值求解方法[J]. 制造技术与机床,2018(1):60-63. LU Chao,PAN Shangfeng,SUN Jianghong. Establishment of evaluation index system and index value solving method for remanufacturing of heavy machine tool base parts[J]. Manufacturing Technology & Machine Tool,2018(1):60-63. [58] 杜彦斌. 退役机床再制造评价与再设计方法研究[D]. 重庆:重庆大学,2012. DU Yanbin. Study on evaluation and redesign methods of machine tool remanufacturing[D]. Chongqing:Chongqing University,2012. [59] DU Yanbin,CAO Huajun,LIU Fei,et al. An integrated method for evaluating the remanufacturability of used machine tool[J]. Journal of Cleaner Production,2011,20(1):82-91. [60] 秦训鹏,郭巍,胡志力,等. 退役汽车梯度资源化及其零部件可再制造性评价[J]. 表面工程与再制造,2015,15(3):34-37. QIN Xunpeng, GUO Wei, HU Zhili, et al. Gradient resource utilization of retired automobiles and evaluation of remanufacturability of parts[J]. Surface Engineering and Remanufacturing,2015,15(3):34-37. [61] 侯林,高波,刘海春. 农机产品再制造性评价系统研究[J]. 农机化研究,2012,34(7):36-38,42. HOU Lin,GAO Bo,LIU Haichun. Agricultural machinery remanufacturing evaluation system research[J]. Journal of Agricultural Mechanization Research,2012,34(7):36-38,42. [62] 武园园. 农机产品再制造性评价研究[D]. 保定:河北农业大学,2010. WU Yuanyuan. Evaluation of the agriculture machinery remanufacturability[D]. Baoding:Hebei Agricultural University,2010. [63] 罗井知. 基于信息追溯的退役工程机械再制造过程绿色性评价研究[D]. 长沙:湖南大学,2014. LUO Jinzhi. Study on green performance assessment of retired construction machinery remanufacturing process based on information tracing[D]. Changsha:Hunan University,2014. [64] 曾寿金,刘志峰,江吉彬. 基于模糊AHP的机电产品绿色再制造综合评价方法及应用[J]. 现代制造工程,2012(7):1-6. ZENG Shoujin,LIU Zhifeng,JIANG Jibin. Green remanufacturing comprehensive assessment method and its application of electromechanical products based on fuzzy AHP[J]. Modern Manufacturing Engineering,2012(7):1-6. [65] THOMAS A. OMWANDO W A. OTIENO S F,et al. A Bi-level fuzzy analytical decision support tool for assessing product remanufacturability[J]. Journal of Cleaner Production,2018,174. [66] 向琴. 基于ECC的工程机械再制造方案决策研究[D].武汉:武汉科技大学,2017. XIANG Qin. Study on manufacturability in optimal recovery period for in service of construction machinery based on ECC[D].Wuhan:Wuhan University of Science and Technology,2017. [67] 张秀芬,高云飞. 退役机械零部件多维递阶再制造性评价方法[J]. 浙江大学学报,2020,54(5):954-962. ZAHNG Xiufen,GAO Yunfei. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of Zhejiang University,2020,54(5):954-962. [68] 高云飞. 退役机械零部件再制造可行性判断与反馈机制研究[D]. 呼和浩特:内蒙古工业大学,2020. GAO Yunfei. Research on the feasibility judgment and feedback mechanism of remanufacturing retired mechanical parts[D]. Hohhot:Inner Mongolia University of Technology,2020. [69] 王晶晶. 机电产品再制造性评价研究[D]. 郑州:郑州大学,2009. WANG Jingjing. Research on remanufacturability evaluation of electromechanical products[D]. Zhengzhou:Zhengzhou university,2009. [70] 伍俊舟,王玫,袁敏. 基于模糊可拓层次分析法的机电产品再制造性评价方法及应用[J]. 组合机床与自动化加工技术,2016(9):153-156. WU Junzhou,WANG Mei,YUAN Min. Evaluation method and application of mechanical and electrical products' remanufacture-ability based on fuzzy-EAHP[J]. Modular Machine Tool & Automatic Manufacturing Technique,2016(9):153-156. [71] 王迎超,尚岳全,孙红月,等. 基于熵权-理想点法的岩爆烈度预测模型及其应用[J]. 煤炭学报,2010(2):218-221. WANG Yingchao,SHANG Yuequan,SUN Hongyue,et al. Research and application of rockburst intensity prediction model based on entropy coefficient and ideal point method[J]. Journal of China Coal Society,2010(2):218-221. [72] 杨琪. 废旧机床再制造性评估研究[D]. 西安:西安工程大学,2018. YANG Qi. Research on remanufacturing evaluation of used machine tool[D]. Xi'an:Xi'an Polytechnic University,2018. [73] 王金龙. 叶片材料FV520B-1超高周疲劳寿命预测及基于疲劳损伤的可再制造性判断研究[D]. 大连:大连理工大学,2019. WANG Jinlong. Study of very-high cycle fatigue life prediction and remanufacturability judgment based on fatigue defect for impeller material FV520B-I[D]. Dalian:Dalian University of Technology,2019. [74] WANG Jinlong,ZHANG Yuanliang,LIU Shujie,et al. Competitive giga-fatigue life analysis owing to FV520B-I[J]. International Journal of Fatigue,2016,87:203-209. [75] WANG Jinlong,YAN Yangyang,YU Jing,et al. Fatigue evaluation of FV520B-I shrouded impeller blade with fatigue crack based on FEA and fracture mechanics[J]. Engineering Failure Analysis,2020,115:104663. [76] 王金龙,张元良,赵清晨,等. 再制造毛坯疲劳损伤临界阈值及可再制造性判断研究[J]. 机械工程学报,2017,53(5):41-49. WANG Jinlong,ZHANG Yuanliang,ZHAO Qingchen,et al. Study of fatigue defect critical threshold of remanufacturing cores and judgment of re-manufacturability based on fatigue defect[J]. Journal of Mechanical Engineering,2017,53(5):41-49. [77] ZHANG Yuanliang,WANG Jinlong,SUN Qingchao,et al. Fatigue life prediction of FV520B with internal inclusions[J]. Materials & Design,2015,69:241-246. [78] LIU Shujie,LIU Chi,HU Yawei,et al,Fatigue life assessment of centrifugal compressor impeller based on FEA[J]. Engineering Failure Analysis,2016,60:383-390. [79] LIU Chi,LIU Shujie,GAO Sibo,et al. Fatigue life assessment of the centrifugal compressor impeller with cracks based on the properties of FV520B[J]. Engineering Failure Analysis,2016,66:177-186. [80] 王常浩,刘淑杰,王轶凡,等. 再制造航空发动机涡轮盘LCF寿命预测研究[J]. 大连理工大学学报,2019,59(4):366-371. WANG Changhao,LIU Shujie,WANG Yifan,et al. Research on low cycle fatigue life prediction of remanufactured turbine disk on aeroengine[J]. Journal of Dalian University of Technology,2019,59(4):366-371. [81] ZHANG Ming,WANG Weiqiang,WANG Pengfei,et al. The fatigue behavior and mechanism of FV520B-I with large surface roughness in a very high cycle regime[J]. Engineering Failure Analysis,2016,66. [82] 张明. 离心压缩机叶轮材料FV520B超高周疲劳行为与机理研究[D]. 济南:山东大学,2015. ZHANG Ming. Research on fatigue behavior and mechanism of FV520B in very high cycle regime[D]. Jinan:Shandong University,2015. [83] 王鹏飞. KMN钢的高周/超高周疲劳机理与剩余寿命估算方法研究[D]. 济南:山东大学,2018. WANG Pengfei. Research on high/very high cycle fatigue mechanism and residual life estimation method of KMN steel[D]. Jinan:Shandong University,2018. [84] WANG Pengfei,WANG Weiqiang,ZHANG Ming,et al. Fatigue behavior and mechanism of KMN in a very high cycle regime[J]. Materials Testing,2018,60(1):55-60. [85] WANG Pengfei,WANG Weiqiang,LI Jianfeng. Research on Fatigue damage of compressor blade steel KMN-I using nonlinear ultrasonic testing[J]. Shock and Vibration,2017,1:1-11. [86] WANG Pengfei,WANG Weiqiang,LI Aiju,et al. Effects of microstructure and inclusions on very high cycle fatigue properties of compressor blade steels[J]. Strength,Fracture and Complexity,2017,10(1):1-9. [87] 刘子武. FV520b钢熔覆再制造层冲蚀磨损规律及机理研究[D]. 济南:山东大学,2017. LIU Ziwu. Research on erosion wear law and mechanism of cladding repaired FV520B Steel[D]. Jinan:Shandong University,2017. [88] LIU Ziwu.,LI Jianfeng,JIA Xiujie,et al. Establishment and analysis of erosion depth model for impeller material FV520B[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2016,3(1):27-34. [89] 柴保明,白岩龙,刘建琴,等. 再制造全断面隧道掘进机刀盘多元损伤探究[J]. 河北工程大学学报,2017,34(2):109-112. CHAI Baoming,BAI Yanlong,LIU Jianqin,et al. Research on multiple damage of remanufacturing TBM cutterhead[J]. Journal of Hebei University of Engineering,2017,34(2):109-112. [90] HAN Z Y,LIU G Н,FU H Н. A review of residual life prediction for remanufacturing of machine tool[J]. Applied Mechanics & Materials,2014,552:133-138. [91] 伍建军,游雄雄,吴事浪,等. 典型矿冶废旧零部件剩余寿命预测模型与可再制造性评估决策方法[J]. 机械科学与技术,2014,12(33):1859-1864. WU Jianjun,YOU Xiongxiong,WU Shilang,et al. Remanufacturing assessment of typical mining waste parts based on remaining life prediction model[J]. Mechanical Science and Technology for Aerospace Engineering,2014,12(33):1859-1864. [92] 伍建军,游雄雄,吴事浪,等. 两参数威布尔分布的废旧矿冶零部件再制造剩余寿命预测新方法[J]. 机械科学与技术,2016,35(4):589-593. WU Jianjun,YOU Xiongxiong,WU Shilang,et al. Residual life prediction of remanufacturing for mining waste parts based on two-parameter weibull distribution[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):589-593. [93] 伍建军,游雄雄,吴事浪,等. 非等间距灰色法预测废旧零件剩余寿命研究[J]. 机械设计与制造,2015(6):126-128. WU Jianjun,YOU Xiongxiong,WU Shilang,et al. The non-equidistance gray method to predict the residual life of waste parts research[J]. Machinery Design & Manufacture,2015(6):126-128. [94] 伍建军,游雄雄,吴事浪,等. 改进灰色法的废旧设备剩余寿命预测研究[J]. 现代制造工程,2016(3):134-137. WU Jianjun,YOU Xiongxiong,WU Shilang,et al. The improved gray method to predict the residual life of waste equipment research[J]. Modern Manufacturing Engineering,2016(3):134-137. [95] 宋守许,汪志全,蔚辰. 基于在线监测的曲轴主动再制造时机识别[J]. 现代制造工程,2020(8):7-12,19. SONG Shouxu,WANG Zhiquan,YU Chen. Timing recognition of crankshaft predecisional remanufacturing based on online monitoring[J]. Modern Manufacturing Engineering,2020(8):7-12,19. |
[1] | WANG Lei, GUO Yuyao, CAO Jianhua, ZHANG Zelin, XIA Xuhui, ZHAO Hui. Remanufacturing Service Combination and Optimization for Generalized Growth of Retired Mechanical Products [J]. Journal of Mechanical Engineering, 2023, 59(7): 339-354. |
[2] | WANG Xiuyu, CHENG Jiangbo, GE Yunyun, ZHANG Baosen, LIANG Xiubing. Microstructure and Mechanical Properties of the AlCoTi Amorphous Coating for Magnesium Alloy Remanufacturing [J]. Journal of Mechanical Engineering, 2023, 59(7): 367-374,388. |
[3] | CHENG Huanbo, GUO Lijun, ZHOU Jinhu, WANG Huafeng, TANG Mingxi. Recycling of Carbon Fiber and Performance Evaluation for Its Reinforced Composites Made of Additive Manufacturing [J]. Journal of Mechanical Engineering, 2023, 59(7): 375-388. |
[4] | ZHOU Dan, WANG Pengcheng, ZHANG Tengfei, SONG Shouxu. Correlation Between the Color Difference and Joint Performance of Recycling ZL101A Alloy Repaired by TIG [J]. Journal of Mechanical Engineering, 2023, 59(7): 398-406. |
[5] | WANG Haidou, ZHANG Wenyu, SONG Wei. Twenty Years of Remanufacturing Footprint and Development Trends [J]. Journal of Mechanical Engineering, 2023, 59(20): 80-95. |
[6] | LIN Jing, JIAO Jinyang. Research Progress and Challenges of Interpretable Mechanical Intelligent Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(20): 215-224. |
[7] | REN Meng, ZHU Lina, YU Helong, XING Zhiguo, WANG Haidou, XU Binshi. Research Progress of Smart Materials Used for Damage Condition Monitoring of Machineries [J]. Journal of Mechanical Engineering, 2023, 59(18): 42-53. |
[8] | FENG Xiaohui, GAO Fei, ZHAO Yang, GUAN Xuefei, HE Jingjing, LIN Jing. Research on Fatigue Performance of Low Carbon Steel by Wire and Arc Additive Remanufacturing [J]. Journal of Mechanical Engineering, 2023, 59(14): 151-158,168. |
[9] | SONG Shouxu, WEI Chen, LI Xiang, XU Rui. A Novel On-Line Monitoring Method of Remanufacturing HSS Work Roll Degeneration Based on Pulsed Eddy Current Testing [J]. Journal of Mechanical Engineering, 2023, 59(13): 228-237. |
[10] | JIANG Zhigang, ZHANG Junhui, ZHU Shuo, YAN Wei, ZHANG Hua. Research on Design Process Model of Used Product Remanufacturing for Life Customization [J]. Journal of Mechanical Engineering, 2023, 59(13): 238-245. |
[11] | GUO Yongxing, XIONG Li, ZHOU Xinglin, ZHU Jianyang, HOU Yu, ZHU Pan. High Performance Fiber Bragg Grating Tilt Sensor for Mechanical Equipment [J]. Journal of Mechanical Engineering, 2022, 58(8): 71-78. |
[12] | ZHU Shuo, PAN Zhiqiang, JIANG Zhigang, YAN Wei, ZHANG Hua. A Survey on Remanufacturing Upgrade Design of Used Mechanical and Electrical Products Based on Multi-life Characteristic [J]. Journal of Mechanical Engineering, 2022, 58(7): 183-192. |
[13] | ZHOU Dan, WU Liang, XU Yi, LAN Sen. Experimental Study on the Effect of Laser Pit Texture on Bearing Capacity of Interference Fit in Service [J]. Journal of Mechanical Engineering, 2022, 58(23): 208-217. |
[14] | XING Shixiong, JIANG Zhigang, ZHU Shuo, ZHANG Hua. Research on Optimization Method for Parts Selection of Remanufactured Products Under Dimensional Accuracy Constraints [J]. Journal of Mechanical Engineering, 2022, 58(19): 221-228. |
[15] | SONG Shouxu, YU Jiong, WEI Chen, ZHANG Zhixu. Predecisional Remanufacturing Design Method of Rolls Considering Multi-roll Repair and Grinding Relationship [J]. Journal of Mechanical Engineering, 2022, 58(13): 203-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||