Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (2): 88-99.doi: 10.3901/JME.2022.02.088
Previous Articles Next Articles
WANG Lianfu, DING Ye, WANG Genwang, GUAN Yanchao, WANG Yang, YANG Lijun
Received:
2021-04-28
Revised:
2021-08-17
Online:
2022-01-20
Published:
2022-03-19
CLC Number:
WANG Lianfu, DING Ye, WANG Genwang, GUAN Yanchao, WANG Yang, YANG Lijun. Research Advances of Laser-induced Micro-nano Joining Technology[J]. Journal of Mechanical Engineering, 2022, 58(2): 88-99.
[1] HAN S,HONG S,HAM J,et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials,2014,26(33):5808-5814. [2] ZACHARATOS F,KARVOUNIS P,THEODORAKOS I,et al. Single step laser transfer and laser curing of Ag nanowires:A digital process for the fabrication of flexible and transparent microelectrodes[J]. Materials,2018,11(6):1036. [3] XING S,LIN L,ZOU G,et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters,2019,115(10):103101. [4] KERAMATNEJAD K,ZHOU Y S,LI D W,et al. Laser-assisted nanowelding of graphene to metals:An optical approach toward ultralow contact resistance[J]. Advanced Materials Interfaces,2017,4(15):1700294. [5] LIN L,LIU L,MUSSELMAN K,et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials,2016,26(33):5979-5986. [6] SONG T B,RIM Y S,LIU F,et al. Highly robust silver nanowire network for transparent electrode[J]. ACS Applied Materials & Interfaces,2015,7(44):24601-24607. [7] TOKUNO T,NOGI M,KARAKAWA M,et al. Fabrication of silver nanowire transparent electrodes at room temperature[J]. Nano Research,2011,4(12):1215-1222. [8] LIANG X,ZHAO T,ZHU P,et al. Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films[J]. ACS Applied Materials & Interfaces,2017,9(46):40857-40867. [9] LEE S J,LEE Y B,LIM Y R,et al. High energy electron beam stimulated nanowelding of silver nanowire networks encapsulated with graphene for flexible and transparent electrodes[J]. Scientific Reports,2019,9(1):1-8. [10] LIU Y,ZHANG J,GAO H,et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters,2017,17(2):1090-1096. [11] ZHANG H,WANG S,TIAN Y,et al. Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films[J]. Chemical Engineering Journal,2020,390:124495. [12] CHUNG W H,PARK S H,JOO S J,et al. UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes[J]. Nano Research,2018,11(4):2190-2203. [13] JANG Y R,CHUNG W H,HWANG Y T,et al. Selective wavelength plasmonic flash light welding of silver nanowires for transparent electrodes with high conductivity[J]. ACS Applied Materials & Interfaces,2018,10(28):24099-24107. [14] LIN L,LIU L,PENG P,et al. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology,2016,27(12):125201. [15] von der LINDE D,SOKOLOWSKI-TINTEN K,BIALKOWSKI J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science,1997,109:1-10. [16] LIN L,ZOU G,LIU L,et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters,2016,108(20):203107. [17] SOKOLOWSKI-TINTEN K,BIALKOWSKI J,von der LINDE D. Ultrafast laser-induced order-disorder transitions in semiconductors[J]. Physical Review B,1995,51(20):14186. [18] CHENG J,LIU C S,SHANG S,et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology,2013,46:88-102. [19] YU H,LI X,HAO Z,et al. Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding[J]. Nanoscale,2017,9(21):7012-7015. [20] PENG P,LIU L,GERLICH A P,et al. Self-oriented nanojoining of silver nanowires via surface selective activation[J]. Particle & Particle Systems Characterization,2013,30(5):420-426. [21] LIU L,HUANG H,HU A,et al. Nano brazing of Pt-Ag nanoparticles under femtosecond laser irradiation[J]. Nano-Micro Letters,2013,5(2):88-92. [22] HUANG H,LIU L,PENG P,et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics,2012,112(12):123519. [23] 廖嘉宁,王欣达,周兴汶,等. 铜纳米颗粒的飞秒激光连接过程研究[J]. 中国激光,2021,48(8):0802008. LIAO Jianing,WANG Xinda,ZHOU Xingwen,et al. Joining process of copper nanoparticles with femtosecond laser irradiation[J]. Chinese Journal of Lasers,2021,48(8):0802008. [24] 侯超剑,王根旺,王扬,等. 激光熔融SiO2基底上银纳米颗粒分子动力学仿真[J]. 中国激光,2021,48(8):0802025. HOU Chaojian,WANG Genwang,WANG Yang,et al. Molecular dynamics simulation of laser melting of sliver nanoparticles on SiO2 substrate[J]. Chinese Journal of Lasers,2021,48(8):0802025. [25] GARNETT E C,CAI W,CHA J J,et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials,2012,11(3):241-249. [26] HA J,LEE B J,HWANG D J,et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. Rsc Advances,2016,6(89):86232-86239. [27] PENG Y,CULLIS T,INKSON B J N L. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J]. Nano Letters,2009,9(1):91-96. [28] LI Q,LIU G,YANG H,et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters,2016,108(19):193101. [29] XIAO M,LIN L,XING S,et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics,2020,127(18):184901. [30] LIU G,LI Q,QIU M. Sacrificial solder based nanowelding of ZnO nanowires[C]//Journal of Physics:Conference Series,2016,680(1):012027. [31] CHAKRAVARTY D,TIWARY C S,WOELLNER C F,et al. 3D Porous graphene by low-temperature plasma welding for bone implants[J]. Advanced Materials,2016,28(40):8959-8967. [32] ZOU R,ZHANG Z,XU K,et al. A method for joining individual graphene sheets[J]. Carbon,2012,50(13):4965-4972. [33] WU X,ZHAO H,ZHONG M,et al. The formation of molecular junctions between graphene sheets[J]. Materials Transactions,2013,54(6):940-946. [34] YE X,HUANG T,LIN Z,et al. Lap joining of graphene flakes by current-assisted CO2 laser irradiation[J]. Carbon,2013,61:329-335. [35] DENG Y,BAI Y,YU Y,et al. Laser nanojoining of copper nanowires[J]. Journal of Laser Applications,2019,31(2):022414. [36] 孙天鸣,肖宇,霍金鹏,等. 飞秒激光辐照连接金属氧化物纳米线及电性能调控[J]. 中国激光,2021,48(8):0802006 SUN Tianming,XIAO Yu,HUO Jinpeng,et al. Nanojoining and electrical performance modulation of metal oxide nanowires based on femtosecond laser irradiation[J]. Chinese Journal of Lasers,2021,48(8):0802006 [37] XING S,LIN L,ZOU G,et al. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation[J]. Nanotechnology,2017,28(40):405302. [38] OH J S,KIM S H,HWANG T,et al. Laser-assisted simultaneous patterning and transferring of graphene[J]. The Journal of Physical Chemistry C,2013,117(1):663-668. [39] CHOI H,NGUYEN P T,IN J B. Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications[J]. Applied Surface Science,2019,483:481-488. [40] ERMAKOV V A,ALAFERDOV A V,VAZ A R,et al. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals[J]. Nanotechnology,2013,24(15):155301. [41] BADE S G R,SHAN X,HOANG P T,et al. Stretchable light-emitting diodes with organometal-halide- perovskite-polymer composite emitters[J]. Advanced Materials,2017,29(23):1607053. [42] LIPOMI D J,VOSGUERITCHIAN M,TEE B C,et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology,2011,6(12):788-792. [43] BAE S,KIM H,LEE Y,et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology,2010,5(8):574-578. [44] LEMASTERS R,ZHANG C,MANJARE M,et al. Ultrathin wetting layer-free plasmonic gold films[J]. ACS Photonics,2019,6(11):2600-2606. [45] MIAO J,CHEN S,LIU H,et al. Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes[J]. Chemical Engineering Journal,2018,345:260-270. [46] JIANG Z,FUKUDA K,XU X,et al. Reverse-offset printed ultrathin Ag mesh for robust conformal transparent electrodes for high-performance organic photovoltaics[J]. Advanced Materials,2018,30(26):1707526. [47] JIN W Y,GINTING R T,KO K J,et al. Ultra-smooth,fully solution-processed large-area transparent conducting electrodes for organic devices[J]. Scientific Reports,2016,6(1):1-10. [48] KANG H,JUNG S,JEONG S,et al. Polymer-metal hybrid transparent electrodes for flexible electronics[J]. Nature Communications,2015,6(1):1-7. [49] MO L,RAN J,YANG L,et al. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating[J]. Nanotechnology,2016,27(6):065202. [50] EMMOTT C J M,URBINA A,NELSON J. Environmental and economic assessment of ITO-free electrodes for organic solar cells[J]. Solar Energy Materials and Solar Cells,2012,97:14-21. [51] YE S,RATHMELL A R,CHEN Z,et al. Metal nanowire networks:The next generation of transparent conductors[J]. Advanced Materials,2014,26(39):6670-6687. [52] NOH J,KIM D. Laser shock pressing of silver nanowires on flexible substrates to fabricate highly uniform transparent conductive electrode films[J]. Nanotechnology,2021, 32(15):155303. [53] LEE J,LEE P,LEE H,et al. Very long Ag nanowire synthesis and its application in a highly transparent,conductive and flexible metal electrode touch panel[J]. Nanoscale,2012,4(20):6408-6414. [54] HENLEY S J,CANN M,JUREWICZ I,et al. Laser patterning of transparent conductive metal nanowire coatings:Simulation and experiment[J]. Nanoscale,2014,6(2):946-952. [55] SOPENA P,SERRA P,FERNANDEZ-PRADAS J M. Transparent and conductive silver nanowires networks printed by laser-induced forward transfer[J]. Applied Surface Science,2019,476:828-833. [56] TRAN N H,DUONG T H,KIM H C. A fast fabrication of copper nanowire transparent conductive electrodes by using pulsed laser irradiation[J]. Scientific Reports,2017,7(1):1-9. [57] TRAN N H,HOANG H M,DUONG T H,et al. Using a nanosecond laser to pattern copper nanowire-based flexible electrodes:From simulation to practical application[J]. Applied Surface Science,2020,520:146216. [58] WANG J,CHEN H,ZHAO Y,et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits[J]. ACS Applied Materials & Interfaces,2020,12(31):35211-35221. |
[1] | WU Shujing, WANG Dazhong, GU Guquan, HUANG Shuai, DONG Guojun, GUO guoqiang, AN Qinglong, LI Changhe. High-performance Machining of Complex Curved Surfaces in Multi-energy Fields: Key Technologies and Advancements [J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167. |
[2] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[3] | LI Jicheng, CHEN Guangjun, XU Jinkai, YU Huadong. Study on Material Damage Mechanism and Surface Quality of C/SiC Composites by Laser-ultrasonic Hybrid Micromachining [J]. Journal of Mechanical Engineering, 2024, 60(9): 189-205. |
[4] | LI Han, ZHANG Cheng, CHEN Jie, AN Qinglong, CHEN Ming. Material Removal Mechanism and Evaluation of Machined Surface Quality of SiCf/SiC Composites by Laser Ablation-assisted Milling [J]. Journal of Mechanical Engineering, 2024, 60(9): 206-217. |
[5] | LIU Xin, ZHANG Jun, XU Binbin, LIU Hongguang, ZHAO Wanhua. Controlling Strategy of Preheating Temperature Field in Laser-assisted Machining Process [J]. Journal of Mechanical Engineering, 2024, 60(9): 218-228. |
[6] | HAO Mingwu, YAO Peng, ZHOU Jiabin, LI Yueming, LIANG Shitong, CHU Dongkai, HUANG Chuanzhen. The Influencing Factors of Tangential Dressing of Bronze-bond Diamond Grinding Wheel by Picosecond Pulsed Laser [J]. Journal of Mechanical Engineering, 2024, 60(9): 229-240. |
[7] | XIAO Guijian, LIU Zhenyang, HE Yi, LIU Gang, DENG Zhongcai. Laser-assisted CBN Belt Grinding of TC4 Titanium Alloy for Material Removal Behavior and Surface Integrity Study [J]. Journal of Mechanical Engineering, 2024, 60(9): 241-253. |
[8] | JIANG Anna, YAN Lan, WANG Ningchang, JIANG Feng, LI Zhuo, WEN Qiuling, LU Xizhao, HUANG Hui. Research Status and Development Trends for Energy Field-assisted Laser Induced Plasma-assisted Ablation of Transparent Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 254-272. |
[9] | QIU Wenzhe, ZHANG Zhen, WANG Peng, LIU Denghua, WEI Shichuan, ZHANG Guojun. Regulation of Thermal Deformation Behavior in Wire EDM Process Based on Underwater Laser-induced Shockwave [J]. Journal of Mechanical Engineering, 2024, 60(9): 273-285. |
[10] | ZHANG Chunbo, WU Chengjun, YUAN Haotian. Numerical Simulation of Chemical Reaction Mechanism during Ultrafast Laser Ablation with Different Pulse Numbers under the Action of Plasma [J]. Journal of Mechanical Engineering, 2024, 60(8): 94-106. |
[11] | ZHANG Saifan, LI Bo, XUAN Fuzhen. Signal Denoising and Classification Prediction Method for On-line Monitoring of Acoustic Emission During Laser melting Process [J]. Journal of Mechanical Engineering, 2024, 60(6): 163-176. |
[12] | LI Chunkai, WANG Jiaxin, SHI Yu, DAI Yue. Study on the Dynamic Behavior of GTAW Melt Pool Laser Streak and Penetration Prediction Method [J]. Journal of Mechanical Engineering, 2024, 60(6): 236-244. |
[13] | ONG Jun, TANG Qian, LUO Zhichao, FENG Qixiang, NIE Yunfei, REN Zhihao. Mesoscopic Numerical Simulation during Selective Laser Melting of Maraging Steel [J]. Journal of Mechanical Engineering, 2024, 60(3): 282-295. |
[14] | RONG Peng, Cheng Jing, DENG Hongwen, TAO Changan, GAO Chuanyun, RAN Xianzhe, CHENG Xu, TANG Haibo, LIU Dong. Effect of Different Heat Treatments on Microstructure and Tensile Properties of TC4 Titanium Alloy Fabricated by Laser Directed Energy Deposition [J]. Journal of Mechanical Engineering, 2024, 60(20): 99-107. |
[15] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||