Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (2): 2-16.doi: 10.3901/JME.2022.02.002
Previous Articles Next Articles
JIA Qiang1, ZOU Guisheng1, ZHANG Hongqiang2, WANG Wengan1, DENG Zhongyang1, REN Hui1, LIU Lei1, PENG Peng2, GUO Wei2
Received:
2021-04-21
Revised:
2021-07-02
Online:
2022-01-20
Published:
2022-03-19
CLC Number:
JIA Qiang, ZOU Guisheng, ZHANG Hongqiang, WANG Wengan, DENG Zhongyang, REN Hui, LIU Lei, PENG Peng, GUO Wei. Research Progress in Sintering-bonding with Nanoparticle Materials as Interlayer and Its Packaging Application[J]. Journal of Mechanical Engineering, 2022, 58(2): 2-16.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 盛况,董泽政,吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报,2019,9(39):5576-5584. SHENG Kuang,DONG Zezheng,WU Xinke. Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceeding of the CSEE,2019,39(19):5576-5584. [2] 李春,邓君楷. 第三代半导体产业概况剖析[J]. 集成电路应用,2017(2):87-90. LI Chun,DENG Junkai. Analysis of the third generation semiconductor industry[J]. Applications of IC,2017(2):87-90. [3] 袁凤坡,白欣娇,李帅,等. 封装工艺对SiC功率模块热电性能的影响[J]. 半导体技术,2019,44(9):712-716. YUAN Fengpo,BAI Xinjiao,LI Shuai,et al. Influence of packaging process on thermoelectric properties of SiC power modules[J]. Semiconductor Technology,2019,44(9):712-716. [4] 范吉磊. 纳米银/铜的可控制备、低温烧结及其在微电子封装中的互连应用[D]. 北京:中国科学院大学,2020. FAN Jilei. Controllable preparation and low temperature sintering of nano silver/copper and its interconnection application in microelectronic packaging[D]. Beijing:University of Chinese Academy of Sciences,2020. [5] Paknejad S A,Mannan S H. Review of silver nanoparticle based die attach materials for high power/temperature applications[J]. Microelectronics Reliability,2017,70:1-11. [6] 邹贵生,闫剑锋,刘磊,等. 纳米金属颗粒膏合成及其低温烧结连接的电子封装应用研究进展[J]. 机械制造文摘:焊接分册,2013,34(1):12-16. ZOU Guisheng,YAN Jianfeng,LIU Lei,et al. Development of the synthesis of metal nanoparticle paste for electronic packaging[J]. Abstract of Mechanical Manufacture:Welding Section,2013,34(1):12-16. [7] Chen C,Zhang Z,Wang Q,et al. Robust bonding and thermal-stable Ag-Au joint on ENEPIG substrate by micron-scale sinter Ag joining in low temperature pressure-less[J]. Journal of Alloys and Compounds,2020,828:154397. [8] 杨雪. 低温烧结纳米银膏的制备及其性能研究[D]. 哈尔滨:哈尔滨工业大学,2016. YANG Xue. Study on preparation and performance of low temperature sintered silver nanoparticle paste[D]. Harbin:Harbin Institute of Technology,2016. [9] 易盼,董超芳,肖葵,等. 电化学迁移研究进展[J]. 科技导报,2018,36(7):64-73. YI Pan,DONG Chaofang,XIAO Kui,et al. Current status and prospects of electrochemical migration research[J]. Science & Technology Review,2018,36(7):64-73. [10] Zhang H,BAI H,JIA Q,et al. Stabilizing the sintered nanopore bondline by residual organics for high temperature electronics[J]. Microelectronics Reliability,2020,111:113727. [11] Paknejad S A,DUMAS G,WEST G,et al. Microstructure evolution during 300℃ storage of sintered Ag nanoparticles on Ag and Au substrates[J]. Journal of Alloys and Compounds,2014,617:994-1001. [12] Del C L,ZINN A A,RUCH P,et al. Oxide-free copper pastes for the attachment of large-area power devices[J]. Journal of Electronic Materials,2019,48(10):6823-6834. [13] Mou Y,LIU J,CHENG H,et al. Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu-Cu bonding[J]. JOM,2019,71(9):3076-3083. [14] Tu Y,ZHU P L,LI G,et al. Multiscale characterization of the joint bonded by Cu@Ag core@shell nanoparticles[J]. Applied Physics Letters,2020,116(21):213101. [15] Dai X,XU W,ZHANG T,et al. Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics[J]. Chemical Engineering Journal,2019,364:310-319. [16] Ji H,ZHOU J,LIANG M,et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry,2018,41:375-381. [17] Schwarzbauer H,KUHNERT R. Novel large area joining technique for improved power device performance[J]. IEEE Transactions on Industry Applications,1991,27(1):93-95. [18] Schwarzbauer H. Method of securing electronic components to a substrate[P]. US4810672. 1989-03-07. [19] Li Y,WONG C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging:Materials,processing,reliability and applications[J]. Materials Science and Engineering:R:Reports,2006,51(1-3):1-35. [20] Bai J G,ZHANG Z Z,CALATA J N,et al. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material[J]. IEEE Transactions on Components and Packaging Technologies,2006,29(3):589-593. [21] Lei T G,CALATA J,LUO S F,et al. Low-temperature sintering of nanoscale silver paste for large-area joints in power electronics modules[J]. Key Engineering Materials,2007,353:2948-2953. [22] Bai J G,CALATA J N,LEI G,et al. Thermomechanical reliability of low-temperature sintered silver die-attachment[J]. IEEE Transactions on Device and Materials Reliability,2006,6(3):436-441. [23] Lu G,WANG M,MEI Y,et al. Advanced die-attach by metal-powder sintering:The science and practice[C]//10th International Conference on Integrated Power Electronics Systems,VDE,2018. [24] 梅云辉. 低温烧结纳米银焊膏电迁移和粘接热弯曲性能研究[D]. 天津:天津大学,2010. MEI Yunhui. The investigation of low temperature sintered nanosilver paste on migration and thermal bending in die-attachment[D]. Tianjin:Tianjin University,2010. [25] 张宏强. 纳米银焊膏优化及其SiC功率芯片互连高温可靠性研究[D]. 北京:清华大学,2018. ZHANG Hongqiang. A study on the SiC die attach sintered by the nano-Ag paste and its high temperature reliability[D]. Beijing:Tsinghua University,2018. [26] Chen Y,PALMER R E,WILCOXON J P. Sintering of passivated gold nanoparticles under the electron beam[J]. Langmuir,2006,22(6):2851-2855. [27] Asoro M A,KOVAR D,FERREIRA P J. Effect of surface carbon coating on sintering of silver nanoparticles:In situ TEM observations[J]. Chemical Communications. 2014,50(37):4835-4838. [28] Kim M,OSONE S,KIM T,et al. Synthesis of nanoparticles by laser ablation:A review[J]. KONA Powder and Particle Journal,2017,34:80-90. [29] Lu T W,FENG C S,WANG Z,et al. Microstructures and mechanical properties of CoCrFeNiAl 0.3 high-entropy alloy thin films by pulsed laser deposition[J]. Applied Surface Science,2019,494:72-79. [30] Yu J,XIAO T,WANG X,et al. A controllability investigation of magnetic properties for FePt alloy nanocomposite thin films[J]. Nanomaterials,2019,9(1):53-62. [31] Liu Z,CAI J,WANG Q,et al. Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu-Cu bonding using Ag nanostructure as intermediate[J]. Journal of Alloys and Compounds. 2018,767:575-582. [32] Wang W,ZOU G,JIA Q,et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering:A,2020,793:139894. [33] Feng B,SHEN D,WANG W,et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces,2019,11(18):16972-16980. [34] Siow K S. Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study[J]. Journal of Electronic Packaging,2016,138(2):161006. [35] 陈旭,李凤琴,蔺永诚,等. 高温功率半导体器件连接的低温烧结技术[J]. 电子元件与材料,2006(8):4-6. CHEN Xu,LI Fengqin,LIN Yongcheng,et al. Low-temperature sintering technique for high-temperature power semiconductor devices packaging[J]. Electronic Components & Materials,2006(8):4-6. [36] Li M,XIAO Y,ZHANG Z,et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces,2015,7(17):9157-9168. [37] Kiełbasiński K,SZAŁAPAK J,JAKUBOWSKA M,et al. Influence of nanoparticles content in silver paste on mechanical and electrical properties of LTJT joints[J]. Advanced Powder Technology,2015,26(3):907-913. [38] Wang M,MEI Y,LI X,et al. Die-attach on nickel substrate by pressureless sintering a trimodal silver paste[J]. Materials Letters,2019,253:131-135. [39] Schaal M,KLINGLER M,WUNDERLE B. Silver sintering in power electronics:The state of the art in material characterization and reliability testing[C]//7th Electronic System-Integration Technology Conference (ESTC),IEEE,2018. [40] Felba J. Technological aspects of silver particle sintering for electronic packaging[J]. Circuit World,2018,44(1):2-15. [41] Liu W,AN R,WANG C,et al. Recent progress in rapid sintering of nanosilver for electronics applications[J]. Micromachines,2018,9(7):346. [42] Zhang Z,CHEN C,YANG Y,et al. Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air[J]. Journal of Alloys and Compounds,2019,780:435-442. [43] Wang M,MEI Y,LI X,et al. Pressureless silver sintering on nickel for power module packaging[J]. IEEE Transactions on Power Electronics,2019,34(8):7121-7125. [44] Zhang H,BAI H,PENG P,et al. SiC chip attachment sintered by nanosilver paste and their shear strength evaluation[J]. Welding in the World,2019,63(3):1055-1063. [45] 杨金龙,董长城,骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报,2019,33(增刊2):360-364. YANG Jinlong,DONG Changcheng,LUO Jian. Development of low-temperature sintered nanoscale silver for new power device packaging[J]. Materials Reports,2019,33(Suppl.2):360-364. [46] Hanss A,SCHMID M,BHOGARAJU S K,et al. Process development and reliability of sintered high power chip size packages and flip chip LEDs[C]//International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC),Japan Institute of Electronics Packaging,2018. [47] Zubir N S M,ZHANG H,ZOU G,et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials,2019,48(11):7562-7572. [48] Iwashige T,SUGIURA K,ENDO T,et al. Metallization technology of SiC power module in high temperature operation[C]//International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC),IEEE,2018. [49] CHEW L M,SCHMITT W,Nachreiner J,et al. Silver sinter paste optimized for pressure sintering under air atmosphere on precious and non-precious metal surfaces with high reliable sintered[C]//10th International Conference on Integrated Power Electronics Systems,2018. [50] Mei Y,LU G,CHEN X,et al. Effect of oxygen partial pressure on silver migration of low-temperature sintered nanosilver die-attach material[J]. IEEE Transactions on Device and Materials Reliability,2011,11(2):312-315. [51] Chua S T,SIOW K S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver,direct bond copper (DBC) and copper substrates aged at 300 C[J]. Journal of Alloys and Compounds,2016,687:486-498. [52] Gao Y,ZHANG H,LI W,et al. Die bonding performance using bimodal Cu particle paste under different sintering atmospheres[J]. Journal of Electronic Materials,2017,46(7):4575-4581. [53] Gao Y,LI W,CHEN C,et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere[J]. Materials & Design,2018,160:1265-1272. [54] 闫剑锋. 纳米金属颗粒焊膏合成及其低温烧结连接研究[D]. 北京:清华大学,2013. YAN Jianfeng. A Study on the synthesis of metal nanoparticle joining paste and its low temperature bonding through sintering[D]. Beijing:Tsinghua University,2013. [55] Jeong S,LEE S H,JO Y,et al. Air-stable,surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors[J]. Journal of Materials Chemistry C,2013,1(15):2704-2710. [56] Haque M M,CHO D,LEE C S. Investigation of sintering behavior of octanethiol-coated copper nano ink under various atmospheres[J]. Thin Solid Films,2013,536:32-38. [57] Nishikawa H,HIRANO T,TAKEMOTO T,et al. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. Open Surface Science Journal,2011,3(3):92-100. [58] Ren H,MU F,SHIN S,et al. Low temperature Cu bonding with large tolerance of surface oxidation[J]. AIP Advances,2019,9(5):55127. [59] Tan K S,CHEONG K Y. Mechanical properties of sintered Ag-Cu die-attach nanopaste for application on SiC device[J]. Materials & Design,2014,64:166-176. [60] Wang D,MEI Y,XIE H,et al. Roles of palladium particles in enhancing the electrochemical migration resistance of sintered nano-silver paste as a bonding material[J]. Materials Letters,2017,206:1-4. [61] Yang C A,WU J,LEE C C,et al. Analyses and design for electrochemical migration suppression by alloying indium into silver[J]. Journal of Materials Science:Materials in Electronics,2018,29(16):13878-13888. [62] Ito T,OGURA T,HIROSE A. Effects of Au and Pd additions on joint strength,electrical resistivity,and Ion-migration tolerance in low-temperature sintering bonding using Ag2O paste[J]. Journal of Electronic Materials,2012,41(9):2573-2579. [63] Li D,MEI Y,XIN Y,et al. Reducing migration of sintered Ag for power devices operating at high temperature[J]. IEEE Transactions on Power Electronics,2020,35(12):12646-12650. [64] SCHMITT W,CHEW L M. Silver sinter paste for SiC bonding with improved mechanical properties[C]//IEEE 67th Electronic Components and Technology Conference (ECTC),2017. [65] Zhang H,NAGAO S,SUGANUMA K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials,2015,44(10):3896-3903. [66] Sugiura K,IWASHIGE T,TSURUTA K,et al. Thermal stability improvement of sintered Ag die-attach materials by addition of transition metal compound particles[J]. Applied Physics Letters,2019,114(16):161903. [67] LIU J,mou y,PENG Y,et al. Facile preparation of Cu-Ag micro-nano composite paste for high power device packaging[C]//IEE 70th Electronic Components and Technology Conference(ECTC). 2020:755-761. [68] Yan J,ZOU G,ZHANG Y,et al. Metal-metal bonding process using Cu+Ag mixed nanoparticles[J]. Materials Transactions,2013,54(6):879-883. [69] Kim K,JUNG K,PARK B,et al. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance[J]. Journal of Nanoscience and Nanotechnology,2013,13(11):7620-7624. [70] Naguib H,MACLAURIN B. Silver migration and the reliability of Pd/Ag conductors in thick-film dielectric crossover structures[J]. IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1979,2(2):196-207. [71] Lin J C,CHAN J Y. On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field[J]. Materials Chemistry & Physics,1996,43(3):256-265. [72] 王迪. 高温环境下纳米Ag-Pd焊膏的抗电化学迁移老化行为研究[D]. 天津:天津大学,2018. WANG Di. On resistance of nano-Ag-Pd paste to electrochemical migration behavior at high temperatures[D]. Tianjin:Tianjin University,2018. [73] Lin J C,WU W. On the sintering of mixed and alloyed silver-palladium powders from chemical coprecipitation[J]. Materials Chemistry and Physics,1995,40(2):110-118. [74] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. [75] Kim M I,CHOI E B,LEE J. Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles[J]. Journal of Materials Research and Technology,2020,9(6):16006-16017. [76] Tian Y,JIANG Z,WANG C,et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances,2016,6(94):91783-91790. [77] Ferrando R,JELLINEK J,JOHNSTON R L. Nanoalloys:From theory to applications of alloy clusters and nanoparticles[J]. Chem. Rev.,2008,108(3):845-910. [78] Fang H,YANG J,WEN M,et al. Nanoalloy materials for chemical catalysis[J]. Advanced Materials,2018,30(17):1705698. [79] Jabbareh M A,MONJI F. Thermodynamic modeling of Ag-Cu nanoalloy phase diagram[J]. Calphad,2018,60:208-213. [80] Garzel G,JANCZAK-RUSCH J,ZABDYR L. Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect[J]. Calphad,2012,36:52-56. [81] 刘晓剑. Ag-Cu超饱和固溶体纳米颗粒纳米冶金及抗电化学迁移机理[D]. 哈尔滨:哈尔滨工业大学,2017. LIU Xiaojian. Nanoalloying and anti-electrochemical migration mechanisms of Ag-Cu supersaturated solid solution nanoparticles[D]. Harbin:Harbin Institute of Technology,2017. [82] Yan J,ZHANG D,ZOU G,et al. Preparation of oxidation-resistant Ag-Cu alloy nanoparticles by polyol method for electronic packaging[J]. Journal of Electronic Materials,2019,48(2):1286-1293. [83] Kim D,KIM H,RYU J,et al. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations:Solid-to-liquid transition and size-dependent behavior[J]. Physical Chemistry Chemical Physics:PCCP,2009,11:5079-5085. [84] Karakaya I,THOMPSON W T. The Ag-Pd (silver-palladium) system[J]. Bulletin of Alloy Phase Diagrams,1988,9(3):237-243. [85] Yamamoto M,KAKIUCHI H,KASHIWAGI Y,et al. Synthesis of Ag-Pd alloy nanoparticles suitable as precursors for Ionic migration-resistant conductive film[J]. Bulletin of the Chemical Society of Japan,2010,83(11):1386-1391. [86] Jia Q,ZOU G,WANG W,et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces,2020,12(14):16743-16752. [87] Jia Q,ZOU G,ZHANG H,et al. Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging[J]. Applied Surface Science,2021,554:149579. [88] 贾强,王文淦,阿占文,等. Ag-Pd纳米合金低温连接及其抗电化学迁移性能[J]. 中国激光,2021,48(8):0802014. JIA Qiang,WANG Wengan,A Zhanwen,et al. Low temperature bonding of Ag-Pd nanoalloy and its resistance to electrochemical-migration[J]. Chinese Journal of Lasers,2021,48(8):0802014. |
[1] | ZHANG Shuye, DUAN Xiaokang, LUO Keyu, XU Sunwu, ZHANG Zhihao, CHEN Jieshi, HE Peng. Current Status of Electronic Packaging Materials Using Machine Learning [J]. Journal of Mechanical Engineering, 2023, 59(22): 222-233. |
[2] | WANG Tong, QIAN Caifu, WU Zhiwei, ZHAO Jingyu. Analysis of Load-bearing Capacity of Multi-layer Wrapped High Pressure Vessels [J]. Journal of Mechanical Engineering, 2023, 59(14): 169-178. |
[3] | WANG Xiaoqiang, GAO Xiaolong, LIU Jing, LI Lunkun. ffects of V/Nb Composite Interlayer on Microstructure and Mechanical Properties of NiTi Alloy/Stainless Steel Dissimilar Metal Laser Welding [J]. Journal of Mechanical Engineering, 2022, 58(8): 136-142. |
[4] | HAO Hong, XU Jun. Synthesis of Self-supported CC/NiS2 Nanosheet as an Interlayer and Its Performance Research of Lithium-sulfur Battery [J]. Journal of Electrical Engineering, 2022, 17(3): 12-18. |
[5] | HUANG Haijun, ZHOU Minbo, WU Xue, ZHANG Xinping. Nano-joining Mechanisms and Joint Reliability of Die Attachment Using Bimodal-sized Cu Nanoparticle Paste Capable of Low-temperature Pressureless Sintering [J]. Journal of Mechanical Engineering, 2022, 58(2): 58-65. |
[6] | WANG Lianfu, DING Ye, WANG Genwang, GUAN Yanchao, WANG Yang, YANG Lijun. Research Advances of Laser-induced Micro-nano Joining Technology [J]. Journal of Mechanical Engineering, 2022, 58(2): 88-99. |
[7] | ZHANG Wenwu, PAN Hao, MA Qiuchen, LI Mingyu, JI Hongjun. Review of Power Ultrasonic Micro-nano Joining Technology for Electronic Manufacturing [J]. Journal of Mechanical Engineering, 2022, 58(2): 100-121. |
[8] | LIU Zhibin, QIAO Yuanyuan, ZHAO Ning. Effect of Zn Content on Interfacial Reactions of Cu/Sn/Cu-xZn Micro Solder Joints [J]. Journal of Mechanical Engineering, 2022, 58(2): 269-275. |
[9] | YIN Limeng, SU Zilong, ZUO Cunguo, ZHANG Zhongwen, YAO Zongxiang, WANG Gang, WANG Shanlin, CHEN Yuhua. Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints [J]. Journal of Mechanical Engineering, 2022, 58(2): 300-306. |
[10] | KONG Xiangxia, ZHAI Junjun, SUN Fenglian. Research Progress of Low-Silver Sn-0.3Ag-0.7Cu Solder for Electronic Packaging [J]. Journal of Mechanical Engineering, 2022, 58(12): 39-54. |
[11] | CHEN Zhiwen, MEI Yunhui, LIU Sheng, LI Hui, LIU Li, LEI Xiang, ZHOU Ying, GAO Xiang. Reliability in Electronic Packaging: Past, Now and Future [J]. Journal of Mechanical Engineering, 2021, 57(16): 248-268. |
[12] | YANG Jia, ZHANG Xunye, MA Guanglu, LIN Panpan, XU Yanqiang, LIN Tiesong, HE Peng. Microstructure and Properties of Brazed Joint Between SiCf/SiC Composite and Ni-based Superalloy [J]. Journal of Mechanical Engineering, 2021, 57(12): 161-168. |
[13] | ZHU Dongbin, WU Minqiang, WANG Zhuxian, YANG Weidong. Research on Stable Jetting of Nanoparticle Suspension Ink for Inkjet 3D Printing [J]. Journal of Mechanical Engineering, 2020, 56(9): 243-251. |
[14] | QIAO Yancheng, XIE Shejuan, TONG Zongfei, TANG Jingda, XU Panpan, LI Ji, LI Lijuan, CHEN Zhenmao. Magnetic Hydrogel Defect Detection Based on Infrared Thermal Image of Alternating Magnetic Field [J]. Journal of Mechanical Engineering, 2020, 56(18): 1-6. |
[15] | HUANG Yuan, HANG Chunjin, TIAN Yanhong, WANG Chenxi, ZHANG He. Rapid Sintering of Nano Copper-Silver Core-Shell Paste and Interconnection of Copper Substrates by Pulse Current [J]. Journal of Mechanical Engineering, 2019, 55(24): 51-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||