Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (23): 169-181.doi: 10.3901/JME.2021.23.169
Previous Articles Next Articles
LU Zhongliang1, LI Jian1, LI Sai1, MIAO Kai1, LOU Xiaojie2, LI Dichen1
Received:
2021-01-12
Revised:
2021-08-24
Online:
2021-12-05
Published:
2022-02-28
CLC Number:
LU Zhongliang, LI Jian, LI Sai, MIAO Kai, LOU Xiaojie, LI Dichen. Research Progress in Design and Manufacture of Graphene 3D Electrodes Based on 3D Printing Technology[J]. Journal of Mechanical Engineering, 2021, 57(23): 169-181.
[1] LIU N,LU Z,ZHAO J,et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology,2014,9(3):187-192. [2] CHENG H,LI F. Charge delivery goes the distance[J]. Science,2017,356(6338):582-583. [3] SUN K,WEI T S,AHN B Y,et al. 3D printing of interdigitated li-ion microbattery architectures[J]. Advanced Materials,2013,25(33):4539-4543. [4] SUN H,ZHU J,BAUMANN D,et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials,2019,4(1):45-60. [5] FANG R,ZHAO S,HOU P,et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28(17):3374-3382. [6] LI Xiangming,SHAO Jinyou,KIM S K,et al. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes[J]. Nature Communications,2018,9(1):2578-2578. [7] SINGH M,KAISER J,HAHN H,et al. Thick electrodes for high energy lithium ion batteries[J]. Journal of The Electrochemical Society,2015,162(7). [8] FRANÇOIS B,PRESSER V,BALDUCCI A,et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials,2014,26(14):2283-2283. [9] CHMIOLA J,YUSHIN G,GOGOTSI Y,et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. [10] TIAN W,ZHU J,DONG Y,et al. Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings[J]. Carbon,2020:89-96. [11] QIAO Y,LIU Y,CHEN C,et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries[J]. Advanced Functional Materials,2018,28(51):1805899. [12] SUN H,MEI L,LIANG J,et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science,2017,356(6338):599-604. [13] GALLAGHER K G,TRASK S E,BAUER C,et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A138-A149. [14] CHABI S,PENG C,HU D,et al. Ideal three-dimensional electrode structures for electrochemical energy storage[J]. Advanced Materials,2014,26(15):2440-2445. [15] SIMON P,GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. [16] BURKE A. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochimica Acta,2007,53(3):1083-1091. [17] ZHANG L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. [18] WANG G,ZHANG L,ZHANG J,et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. [19] COME J,AUGUSTYN V,KIM J W,et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes[J]. Journal of The Electrochemical Society,2014,161(5):A718-A725. [20] 王一博,赵九蓬. 3D打印低扭曲度超厚分级孔锂离子电池电极[J]. 现代化工,2017,37(12):118-122. WANG Yibo,ZHAO Jiupeng. 3D printing low distortion ultra thick graded pore lithium ion battery electrode[J]. Modern Chemical Industry,2017,37(12):118-122. [21] KUANG Y,CHEN C,KIRSCH D,et al. Thick electrode batteries:Principles,opportunities,and challenges[J]. Advanced Energy Materials,2019,9(33). [22] XU Y,CHEN C Y,ZHAO Z,et al. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors[J]. Nano Letters,2015,15(7):4605-4610. [23] 吴宇平. 锂离子电池:应用与实践[M]. 北京:化学工业出版社,2004. WU Yuping. Lithium ion battery:Application and Practice[M]. Beijing:Chemical Industry Press,2004. [24] ZHOU L,NING W,WU C,et al. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries[J]. Advanced Materials and Technologies,2019,4(2):1800402. [25] YU W,ZHOU H,LI B Q,et al. 3D printing of carbon nanotubes-based microsupercapacitors[J]. Acs Applied Materials & Interfaces,2017,9(5):4597-4604. [26] BONACCORSO F,COLOMBO L,YU G,et al. Graphene,related two-dimensional crystals,and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. [27] XU Y,LIN Z,ZHONG X,et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications,2014,5(1):25105994. [28] 汪洪溟,朱凌岳. 石墨烯在电化学储能领域应用的研究进展[J]. 化学工程师,2019(7):69-72. WANG Hongming,ZHU Lingyue. Application of graphene in electrochemical energy storage[J]. Chemical Engineer,2019(7):69-72. [29] KAMYSHNY A,MAGDASSI S. Conductive nanomaterials for 2D and 3D printed flexible electronics[J]. Chemical Society Reviews,2019,48(6):1712-1740. [30] 高云雷,赵东林,白利忠,等. 石墨烯用作锂离子电池负极材料的电化学性能[J]. 中国科技论文,2012(3):43-47+51. GAO Yunlei,ZHAO Donglin,BAI Lizhong,et al. Electrochemical properties of graphene as anode materials for lithium ion batteries[J]. China Sciencepaper,2012(3):43-47+51. [31] ZHU C,LIU T,QIAN F,et al. Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores[J]. Nano Letters,2016,16(6):3448-3456. [32] 徐国栋. 锂离子电池材料解析[M]. 北京:机械工业出版社,2018. XU Guodong. Analysis of lithium ion battery materials[M]. Beijing:China Machine Press,2018. [33] 何博,潘宇飞,陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 材料导报,2017,31(13):126-130+137. HE Bo,PAN Yufei,LU Min. Research progress in additive manufacturing of graphene based energy storage materials[J]. Materials Review,2017,31(13):126-130+137. [34] LI J,XU J,XIE Z,et al. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application[J]. Advanced Materials,2018:1800548. [35] NIU Z,LIU L,ZHANG L,et al. A universal strategy to prepare functional porous graphene hybrid architectures[J]. Advanced Materials,2014,26(22):3681-3687. [36] CESARANO J,SEGALMAN R,CALVERT P. Robocasting provides moldless fabrication from slurry deposition[J]. Ceram Ind.,1998,148(4):94-102 [37] KHALED S A,BURLEY J C,ALEXANDER M R,et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets[J]. International Journal of Pharmaceutics,2014,461(1):105-111. [38] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials,2006,16(17):2193-2204. [39] LEWIS J A,GRATSON G M. Direct writing in three dimensions[J]. Materials Today,2004,7(7):32-39. [40] WEI M,ZHANG F,WANG W,et al. 3D direct writing fabrication of electrodes for electrochemical storage devices[J]. Journal of Power Sources,2017,354(JUN.30):134-147. [41] FU K,YAO Y,DAI J,et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials,2017,29(9):1603486.1-1603486.20. [42] 王小锋,孙月花,彭超群,等. 直写成型用悬浮液的设计[J]. 无机材料学报,2015,30(11):1139-1147. WANG Xiaofeng,SUN Yuehua,PENG Chaoqun,et al. Design of suspension for direct writing[J]. Journal of Inorganic Materials,2015,30(11):1139-1147. [43] DUAN SS,YANG K,WANG Z,et al. Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network[J]. ACS Applied Materials & Interfaces,2016,8(3):2187-2192. [44] LIN S,ZHONG Y,ZHAO X,et al. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization- lnspired process[J]. Advanced Materials,2018,30(34):1803004.1-1803004.10. [45] REYES C,SOMOGYI R,NIU S,et al. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication[J]. ACS Applied Energy Materials,2018,1(10):5268-5279. [46] GARCIATUNON E,BARG S,FRANCO J,et al. Printing in three dimensions with graphene[J]. Advanced Materials,2015,27(10):1688-1693. [47] WEI Y,LI B Q,DING S J,et al. 3D printing of interdigitated electrode for all-solid-state microsupercapacitors[J]. Journal of Micromechanics and Microengineering,2018,28(10):105014-. [48] LI Yuanyuan,ZHU Hongli,WANG Yibo,et al. Cellulose-nanofiber-enabled 3D printing of a carbon- nanotube microfiber network[J]. Small Methods,2017,1(10):1700222. [49] 王一博,赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程,2018,46(3):13-21. WANG Yibo,ZHAO Jiupeng. 3D printing flexible wearable lithium ion battery[J]. Journal of Materials Engineering,2018,46(3):13-21 [50] LI H,LU C. Preparation and lithium storage performance of a carbon-coated Si/graphene nanocomposite[J]. Carbon,2015,81:851. [51] CHI K,ZHANG Z,XI J,et al. Freestanding graphene paper supported three-dimensional porous grapheme- polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials & Interfaces,2014,6(18):16312-16319. [52] ZHANG Q,ZHANG F,MEDARAMETLA S P,et al. 3D printing of graphene aerogels[J]. Small,2016,12(13):1702-1708. [53] LIN Y,LIU F,CASANO G,et al. Pristine graphene aerogels by room-temperature freeze gelation[J]. Advanced Materials,2016,28(36):7993-8000. [54] BROWN E,YAN P,TEKIK H,et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design,2019. [55] 肖崇梁. 用于三维锂离子电池的低温直写3D打印装备开发与工艺研究[D]. 深圳:深圳大学,2017. XIAO Chongliang. Development and process research of low temperature direct writing 3D printing equipment for 3D lithium ion battery[D]. Shenzhen:Shenzhen University,2017. [56] CHEN P Y,LIU M,WANG Z,et al. From flatland to spaceland:Higher dimensional patterning with two-dimensional materials[J]. Advanced Materials,2017,29(23):1605096.1-1605096.16. [57] BASU A,SAHA A,GOODMAN C J,et al. Catalytically initiated Gel-in-Gel printing of composite hydrogels[J]. ACS Applied Materials & Interfaces,2017,9(46):40898-40904. [58] FU K,WANG Y,YAN C,et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials,2016,28(13):2587-2594. [59] SEUNG H H. Thermal reduction of graphene oxide[M]. Rijeka:InTech,2010. [60] GAO T,ZHOU Z,YU J,et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities[J]. Advanced Energy Materials,2019,9(8):1802578.1-1802578.10. [61] ESTHER G,BARG S,FRANCO J,et al. Printing in three dimensions with graphene[J]. Advanced Materials,2015,27(10):1688-1693. [62] 杜敏,宋滇,谢玲,等. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报,2018,32(19):4-17. DU Min,SONG Dian,XIE Ling,et al. Application of electrospinning in energy storage of high efficiency reversible ion battery[J]. Materials Review,2018,32(19):4-17. [63] 施旗,雷永鹏,王应德,等. 氮掺杂石墨烯@碳纳米纤维的原位制备及其电催化氧还原性能[J]. 无机材料学报,2016,197(4):18-24. SHI Qi,LEI Yongpeng,WANG Yingde,et al. In situ preparation of nitrogen doped graphene@carbon nanofibers and their electrocatalytic oxygen reduction performance[J]. Journal of Inorganic Materials,2016,197(4):18-24. [64] SHAN C,WANG Y,XIE S,et al. Free-standing nitrogen-doped graphene-carbon nanofiber composite mats:electrospinning synthesis and application as anode material for lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology,2019,94(12):3793-3799. [65] WANG F,CAI J X,YU J,et al. Simultaneous electrospinning and electrospraying:Fabrication of a carbon nanofibre/mno/reduced graphene oxide thin film as a high-performance anode for lithium-ion batteries[J]. Chemelectrochem,2017,5(1):51-61. [66] 金婷,王晓君,焦丽芳. 静电纺丝技术在二次电池和电催化领域的应用进展[J]. 中国科学:化学,2019,49(5):40-51. JIN Ting,WANG Xiaojun,JIAO Lifang. Application progress of electrospinning technology in secondary batteries and electrocatalysis[J]. Chinese Science:Chemistry,2019,49(5):40-51. [67] LIU X,JIANG Y,LI K,et al. Electrospun free- standing N-doped C@SnO2 anode paper for flexible Li-ion batteries[J]. Materials Research Bulletin,2018,109:41-48. [68] 龚佑宁,黎德龙,张豫鹏,等. 石墨烯及其复合材料在锂离子电池负极材料中的应用[J]. 材料导报,2015(7):33-38. GONG Youning,LI Delong,ZHANG Yupeng,et al. Application of graphene and its composites as anode materials for lithium ion batteries[J]. Materials Review,2015(7):33-38. |
[1] | TAI Yuping, ZHU Xiaoyang, LI Hongke, YU Zhihao, ZHANG Houchao, ZHANG Fan, ZHANG Guangming, ZHAO Juan, ZHAO Jiawei, HUANG Youqi, LAN Hongbo. Electric Field Driven Hybrid Micro and Nano 3D Printing of Low Frequency Transparent Electromagnetic Shielding Glass [J]. Journal of Mechanical Engineering, 2024, 60(3): 305-318. |
[2] | ZHAO Xin, HUANG Jinjie. Optimization Methodology for Additive Manufacturing Parameter by Fused Deposition Modeling (FDM) Based on RSM-RVEA [J]. Journal of Mechanical Engineering, 2024, 60(19): 277-297. |
[3] | HUANG Jinjie, ZHAO Xin. Survey on Slicing Computing in 3D Printing [J]. Journal of Mechanical Engineering, 2024, 60(17): 235-262. |
[4] | SUN Jiangtao, ZHANG Jingkai, CHENG Tan, FAN Zhiyong, YE Chunsheng, CAI Daosheng, WEI Qingsong. Development of A Laboratory-scale Testbed for Heat-absorbing Ink Jetting 3D Printing and Experimental Study on Self-made Ink Printing [J]. Journal of Mechanical Engineering, 2024, 60(17): 263-271. |
[5] | HOU Jiaqi, ZHANG Guangming, YU Zhihao, LI Yin, MA Lingxuan, HAN Zhifeng, SHI Kai, GUO Chenxu, LAN Hongbo. Method and Laws of High-efficient Micro-scale 3D Printing with Multi-nozzle Driven by Electric Field of Flat Plate Electrodes [J]. Journal of Mechanical Engineering, 2024, 60(17): 310-320. |
[6] | GUO Meiling, YANG Lei, LI Pengyang, XU Zhentao, XU Chaoyuan, WANG Quandai, LI Yan. Tribological Behavior Regulation of Graphene Nanocrystallites Embedded Carbon Film by Fluorine Plasma Etching [J]. Journal of Mechanical Engineering, 2024, 60(15): 216-226. |
[7] | YU Kang, FU Jianzhong, HE Yong. Research Progress of Tissue Engineering Scaffolds for Soft Tissue Defect Repair [J]. Journal of Mechanical Engineering, 2024, 60(15): 255-271. |
[8] | LIU Mingliang, TANG Qi, TIAN Xiaoyong, LIU Tengfei, QIN Yingjie, LI Dichen. Study on the 3D Printing Process and Axial Compression Performance of Reinforced Cylindrical Shell [J]. Journal of Mechanical Engineering, 2024, 60(15): 283-290. |
[9] | PENG Zilong, WU Jinyin, WANG Mengjie, LI Yinan, LAN Hongbo. Electric Field Driving Micro-scale 3D Printing Mask Electrochemical Machining Microstructure [J]. Journal of Mechanical Engineering, 2024, 60(15): 420-436. |
[10] | WANG Fuji, WANG Gongshuo, WANG Hongquan, FU Rao, WU Bo, WANG Qi. Short-continuous Carbon Fiber Synchronous Reinforced Thermoplastic Composites: An Analysis on the Manufacturing and 3D Printing Process of Its Prepreg Filament [J]. Journal of Mechanical Engineering, 2024, 60(11): 283-295. |
[11] | MU Yingpeng, LIU Fuchu, ZHANG Chi, HUANG Jiefei, LIU Xin, HAN Guangchao, FAN Zitian, XU Feng. Parameter Optimization and Surface Accuracy Control of Water Soluble Calcia Ceramic Core Prepared by Extrusion 3D Printing Technology [J]. Journal of Mechanical Engineering, 2024, 60(1): 170-178. |
[12] | LAN Hongbo, LI Hongke, QIAN Lei, ZHANG Guangming, YU Zhihao, SUN Peng, XU Quan, ZHAO Jiawei, WANG Fei, ZHU Xiaoyang. Electric-field-driven Jet Deposition Micro-nano 3D Printing and Its Applications in Manufacturing Advanced Circuits and Electronics [J]. Journal of Mechanical Engineering, 2023, 59(9): 230-251. |
[13] | LUO Lai-ma, TANG Jun-yu, WU Yu-cheng. Research Progress of WC-Co Cemented Carbide Forming Process [J]. Journal of Mechanical Engineering, 2023, 59(8): 60-73. |
[14] | LI Wenhai, ZHANG Guangming, YU Zun, HAN Zhifeng, MA Lingxuan, PENG Zilong, XIAO Miao, XU Lin, XI Yongming, LAN Hongbo. Research Progress and Challenges of 3D Printed Conductive Biological Scaffolds [J]. Journal of Mechanical Engineering, 2023, 59(23): 186-210. |
[15] | JIANG Zhengquan, DU Xinchun, JIN Yeming, YU Laigui, YAN Mingming, TONG Yuping, HAO Yongxing, ZHANG Shengmao, ZHANG Pingyu. Research Progress of Tribology for Graphene and Its Nanocomposites as Lubricating Additives [J]. Journal of Mechanical Engineering, 2023, 59(21): 293-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||