Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (21): 220-233.doi: 10.3901/JME.2021.21.220
Previous Articles Next Articles
WANG Yancheng1,2, LIU Jiawei2, PAN Hemin2, MEI Deqing1,2
Received:
2021-04-20
Revised:
2021-08-18
Online:
2021-11-05
Published:
2021-12-28
CLC Number:
WANG Yancheng, LIU Jiawei, PAN Hemin, MEI Deqing. Recent Progress on Manufacturing Technologies in Layer-by-layer Mode for the Fabrication of Polymer-based Surface Microstructures[J]. Journal of Mechanical Engineering, 2021, 57(21): 220-233.
[1] Wang D H, Sun Q Q, Hokkanen M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810):55-59. [2] Lloyd V J, Nadeau N J. The evolution of structural colour in butterflies[J]. Current Opinion in Genetics and Development, 2021, 69:28-34. [3] Hensleigh R M, Cui H, Oakdale J S, et al. Additive manufacturing of complex micro-architected graphene aerogels[J]. Materials Horizons, 2018, 5(6):1035-1041. [4] Pandey A, Tzadka S, Yehuda D, et al. Soft thermal nanoimprint with a 10 nm feature size[J]. Soft Matter, 2019, 15(13):2897-2904. [5] 史玉升, 伍宏志, 闫春泽, 等. 4D打印-智能构件的增材制造技术[J]. 机械工程学报, 2020, 56(15):1-25. SHI Yusheng, WU Hongzhi, YAN Chunze, et al. Four-dimensional printing-the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering, 2020, 56(15):1-25. [6] Xun D F, Kohsuke K, Matthew G C, et al. Single crystal texture by directed molecular self-assembly along dual axes[J]. Nature Materials, 2019, 18(11):1235-1243. [7] Fang S J, Husson S, Fu C K, et al. Flexible tactile sensor array utilizing microstructured PDMS bumps with pedot:PSS conductive polymer[C]//IEEE International Conference on Micro Electro Mechanical Systems (MEMS), New York, 2017, pp. 1029-1032. [8] Guo B, Yu X, Zeng Z, et al. Ultra-precision cutting of linear micro-groove array for distributed feedback laser devices[J]. International Journal of Nanomanufacturing, 2018, 14(1):9-22. [9] Zhao X, Chen L, Li D F, et al. Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface:Improving its compatibility with poly(lactic acid) and flame-retardant efficiency simultaneously[J]. Chemical Engineering Journal, 2021, 412:128737-10. [10] Yao Z F, Wang J Y, Pei J. High-performance polymer field-effect transistors:From the perspective of multi-level microstructures[J]. Chemical Science, 2021, 12(4):1193-1205. [11] Saarikoski I, Joki K F, Suvanto M, et al. Superhydrophobic elastomer surfaces with nanostructured micronails[J]. Surface Science, 2012, 606(1-2):91-98. [12] Gong D, Long J, Jiang D, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17511-8. [13] Kang B, Hyeon J, So H. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology[J]. Applied Surface Science, 2020, 499:143733-8. [14] Tang Q, Yao H, Xu B, et al. Integrated effect of hierarchical structure combining isotropic worm-like pit with anisotropic inverted nanopyramid for quasi-omnidirectional c-Si solar cell[J]. Materials Science in Semiconductor Processing, 2021, 121:105363-7. [15] Xu J, Si Y, Li Z, et al. Multiscale structure enabled effective plasmon coupling and molecular enriching for SERS detection[J]. Applied Surface Science, 2021, 544:148908-10. [16] Abubaker S S, Zhang Y. Optimization design and fabrication of polymer micro needle by hot embossing method[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(4):631-640. [17] Gao J, Peng L, Deng Y, et al. Experimental studies on micro powder hot embossing for high-aspect-ratio microstructures with ultra-high molecular weight polyethylene powders[J]. Journal of Micromechanics and Microengineering, 2020, 30(11):115011-10. [18] Lee K M, Ngo C V, Jeong J Y, et al. Fabrication of an anisotropic superhydrophobic polymer surface using compression molding and dip coating[J]. Coatings, 2017, 7(11):194-12. [19] Liu H, Jiang W, Ding Y, et al. Roller-reversal imprint process for preparation of large-area microstructures[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2010, 28(1):104-109. [20] Wang Z, Nandyala D, Colosqui C E, et al. Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control[J]. Applied Surface Science, 2021, 546:149050-9. [21] Mei D q, Xue D, Wang Y c, et al. Undulate microarray fabrication on polymer film using standing surface acoustic waves and ultraviolet polymerization[J]. Applied Physics Letters, 2016, 108(24):241911-4. [22] Park S H, Lee S, Moreira D, et al. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing[J]. Scientific Reports, 2015, 5:15430-9. [23] Tang H, Nie P, Wang R, et al. Piezoresistive electronic skin based on diverse bionic microstructure[J]. Sensors and Actuators A:Physical, 2021, 318:112532-9. [24] Huang C Y, Lai M F, Liu W L, et al. Anisotropic wettability of biomimetic micro/nano dual-scale inclined cones fabricated by ferrofluid-molding method[J]. Advanced Functional Materials, 2015, 25(18):2670-2676. [25] Yang Y, Chen Z, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing[J]. Advanced Materials, 2017, 29(11):1605750-20. [26] Duan L, Lv X, He Q, et al. Geometry-on-demand fabrication of conductive microstructures by photoetching and application in hemostasis assessment[J]. Biosensors and Bioelectronics, 2020, 150:111886-6. [27] 戈欢, 张发军, 黄海瑛, 等. 纳米压印调控PCL-b-PLLA受限结晶取向行为的研究[J]. 高分子学报, 2019, 50(01):82-90. GA Huan, ZHANG Fajun, HUANG Haiying, et al. Studies on the crystallization orientation in micromolded PCL-b-PLLA thin films[J]. Acta Polymerica Sinica, 2019, 50(1):82-90. [28] 罗怡, 闫旭, 陈莉, 等. 聚合物微结构热辅助超声波压印成形[J]. 光学精密工程, 2014, 22(05):1220-1226. Luo Yi, Yan Xu, Chen Li, et al. Replication of polymer microstructure using thermal-assistedultrasonic embossing[J]. Optics and Precision Engineering, 2014, 22(05):1220-1226. [29] Nowduri B, Schulte S, Decker D, et al. Biomimetic nanostructures fabricated by nanoimprint lithography for improved cell-coupling[J]. Advanced Functional Materials, 2020, 30(45):2004227-10. [30] Yang M, Xu K, Wang L. Flexible touch sensor fabricated by double-sided nanoimprint lithography metal transfer[J]. Nanotechnology, 2020, 31(31):315302-5. [31] Xue D, Wang Y C, Zhang J X, et al. Projection-based 3D printing of cell patterning scaffolds with multiscale channels[J]. ACS Applied Materials & Interfaces, 2018, 10(23):19428-19435. [32] Yuan C, Kowsari K, Panjwani S, et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing[J]. ACS Applied Materials & Interfaces, 2019, 11(43):40662-40668. [33] Zhang J, Ye S, Liu H, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors[J]. Nano Energy, 2020, 77:105300-12. [34] 高文, 郑美玲, 金峰, 等. 飞秒激光快速制备大面积二维微纳结构[J]. 激光与光电子学进展, 2020, 57(11):111421-8. GAO Wen, ZHENG Meiling, JIN Feng, et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 2020, 57(11):111421-8. [35] WANG Y, WANG Y C, MEI D Q, et al. Scalable printing of bionic multiscale channel networks through digital light processing-based three-dimensional printing process[J]. 3D Printing and Additive Manufacturing, 2020, 7(3):115-125. [36] Yang Y, Li X, Chu M, et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Science Advances, 2019, 5(4):9490-11. [37] Ma Y, Wu Q, Duanmu L, et al. Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process[J]. Journal of Materials Science, 2020, 55(32):15510-15522. [38] Joyee E B, Szmelter A, Eddington D, et al. Magnetic field-assisted stereolithography for productions of multimaterial hierarchical surface structures[J]. ACS Applied Materials & Interfaces, 2020, 12(37):42357-42368. [39] Han C Y, Wang Y C, Mei D Q. Acoustofluidic waveguides for fabrication of localized polymeric microstructure arrays[J]. Applied Physics A:Materials Science and Processing, 2020, 126(8):651-12. [40] Sazan H, Piperno S, Layani M, et al. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves[J]. Journal of Colloid and Interface Science, 2019, 536:701-709. [41] Meng Z, Li G, Yiu S C, et al. Nanoimprint lithography-directed self-assembly of bimetallic Iron-M (M=Palladium, Platinum) complexes for magnetic patterning[J]. Angewandte Chemie-International Edition, 2020, 59(28):11521-11526. [42] Jambhulkar S, Xu W, Franklin R, et al. Integrating 3D printing and self-assembly for layered polymer/nanoparticle microstructures as high-performance sensors[J]. Journal of Materials Chemistry C, 2020, 8(28):9495-9501. [43] D'Imperio L A, McCrossan A F, Naughton J R, et al. Arrays of electrically-addressable, optically-transmitting 3D nanostructures on free-standing, flexible polymer films[J]. Flexible and Printed Electronics, 2018, 3(2):025007-8. [44] Song X, Fu D, Shah S, et al. UV-micropatterned miniaturization:Rapid in situ photopatterning and miniaturization of microscale features on shrinkable thermoplastics[J]. Advanced Materials Technologies, 2020, 5(6):2000146-7. [45] Uozu Y, Tabor C E, Kajzar F, et al. Continuous roll imprinting of moth-eye antireflection surface using anodic porous alumina and multi-functionalities on the moth-eye surface[C]//International Conference on Organic Photonic Materials and Devices XXII, 2020. [46] Park K C, Choi H J, Chang C H, et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5):3789-3799. [47] Yang C H, Yang S Y. A high-brightness light guide plate with high precise double-sided microstructures fabricated using the fixed boundary hot embossing technique[J]. Journal of Micromechanics and Microengineering, 2013, 23(3):035033-14. [48] Wu C H, Lu C H. Fabrication of an LCD light guide plate using closed-die hot embossing[J]. Journal of Micromechanics and Microengineering, 2008, 18(3):035006-10. [49] Liu C W, Lee C H, Lin S C. Sub-wavelength gratings fabricated on a light bar by roll-to-roll UV embossing process[J]. Optics Express, 2011, 19(12):11299-11311. [50] Wang L, Huang X, Wang D, et al. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range[J]. Chemical Engineering Journal, 2021, 405:127025-10. [51] Gan X, Wang J, Wang Z, et al. Simultaneous realization of conductive segregation network microstructure and minimal surface porous macrostructure by SLS 3D printing[J]. Materials & Design, 2019, 178:107874-10. [52] 汪延成, 鲁映彤, 丁文, 等. 柔性触觉传感器的三维打印制造技术研究进展[J]. 机械工程学报, 2020, 56(19):239-252. WANG Yancheng, LU Yingtong, DING Wen, et al. Three recent progress on-dimensional printing processes to fabricate flexible tactile sensors[J]. Journal of Mechanical Engineering, 2020, 50(19):239-252. [53] Zhang J, Zhou L J, Zhang H M, et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene[J]. Nanoscale, 2018, 10(16):7387-7395. [54] Lee Y, Park J, Cho S, et al. Flexible Ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range[J]. ACS Nano, 2018, 12(4):4045-4054. [55] Pan L, Chortos A, Yu G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014, 5:3002-8. [56] DAEHOON H, CINDY F, CHEN Y, et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel[J]. Applied Materials & Interfaces, 2018, 10:17512-17518. [57] Mohammadi M, Mousavi Shaegh S A, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration:Recent advances and emerging designs[J]. Journal of Controlled Release, 2018, 274:35-55. [58] Suethao S, Shah D U, Smitthipong W. Recent progress in processing functionally graded polymer foams[J]. Materials (Basel), 2020, 13(18):4060-16. [59] Williams N P, Rhodehamel M, Yan C, et al. Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates[J]. Biomaterials, 2020, 240:119856-10. [60] Marques-Almeida T, Cardoso V F, Gama M, et al. Patterned piezoelectric scaffolds for osteogenic differentiation[J]. International Journal of Molecular Sciences, 2020, 21(21):8352-8. [61] Oladapo B I, Zahedi S A, Ismail S O, et al. 3D printing of PEEK-cHAp scaffold for medical bone implant[J]. Bio-Design and Manufacturing, 2020, 4(1):44-59. [62] Rezai Rad M, Fahimipour F, Dashtimoghadam E, et al. Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/β-TCP nanocomposite scaffolds[J]. Bioprinting, 2021, 21:00117-9. [63] Cai J, Li X, Ma L, et al. Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction[J]. Composites Science and Technology, 2019, 171:199-205. [64] Cheng Z, Zhang D, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2018, 28(7):1705002-11. [65] Zhang W, Wang H, Wang H, et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers[J]. Nature Communications, 2021, 12(1):112-8. [66] Zhou M, Xiong X, Jiang B, et al. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding[J]. Applied Surface Science, 2018, 427:854-860. [67] Lv T, Cheng Z, Zhang D, et al. Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage[J]. ACS Nano, 2016, 10(10):9379-9386. [68] 李延强, 兰红波, 许权, 等. 纳米压印复合软模具建模研究[J]. 机械工程学报, 2018, 54(19):170-181. LI Yanqiang, LAN Hongbo, XU Quan, et al. Modeling of flexible composite mold for nanoimprint lithography[J]. Journal of Mechanical Engineering, 2018, 54(19):170-181. |
[1] | ZHU Libin, WANG Ying, NIE Shuaishuai, HUANG Haihong, LIU Zhifeng. Thermal Equilibrium Research of Supercritical CO2 Assisted Cutting Process Based on Mass Flow Optimization [J]. Journal of Mechanical Engineering, 2024, 60(19): 367-376. |
[2] | LIU Mingliang, TANG Qi, TIAN Xiaoyong, LIU Tengfei, QIN Yingjie, LI Dichen. Study on the 3D Printing Process and Axial Compression Performance of Reinforced Cylindrical Shell [J]. Journal of Mechanical Engineering, 2024, 60(15): 283-290. |
[3] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[4] | GUAN Jiju, ZHU Zhengbing, XU Zhengya, LUAN Zhiqiang, XU Xuefeng. Dual Synergistic Lubrication Mechanism of Nano-fluid and Grinding Wheel Prepared by CNTs@T321 Nano-capsules [J]. Journal of Mechanical Engineering, 2024, 60(9): 351-363. |
[5] | ZHAO Xikun, LI Congbo, YANG Yong, Lü Yan, JIANG Shuyan. A Data and Model Hybrid Driven Cutting Parameter Energy-efficiency Optimization Method for Flexible Machining Process Considering Cutting Tool Flexibility [J]. Journal of Mechanical Engineering, 2024, 60(7): 236-248. |
[6] | LIU Chunjing, TANG Dunbing, CHEN Xingqiang, WEI Tianlu. Research on Stability of Milling System Based on Updated Complete Discretization Method [J]. Journal of Mechanical Engineering, 2023, 59(15): 162-173. |
[7] | TIAN Zhi-qiang, JIANG Xing-yu, YANG Guo-zhe, LIU Wei-jun, SUO Ying-qi, CHEN Ke-qiang, XING Fei. Energy Efficient Scheduling of Flexible Job Shop with Aerospace Complex Components [J]. Journal of Mechanical Engineering, 2023, 59(8): 273-287. |
[8] | Lü Yan, XU Zhengjun, LI Congbo, LI Lingling, YANG Miao. Comprehensive Energy Saving Optimization of Processing Parameters and Job Shop Dynamic Scheduling Considering Disturbance Events [J]. Journal of Mechanical Engineering, 2022, 58(19): 242-255. |
[9] | LI Sinian, HUANG Haihong, ZHAO Lunwu, LIU Zhifeng. Influence of Applied Magnetic Field on the Microstructures and Properties of FeCoNiCr0.5B High-entropy Alloy Coating Fabricated by Plasma Cladding [J]. Journal of Mechanical Engineering, 2022, 58(13): 251-260. |
[10] | ZHANG Jiaheng, HU Zhili. Microstructural Thermal Stability of Aluminum Alloy Friction Stir Welding Joint [J]. Journal of Mechanical Engineering, 2022, 58(6): 73-80. |
[11] | LI Congbo, WANG Rui, KOU Yang, Lü Yan, ZHAO Xikun. Energy Saving Optimization Method of Flexible Job Shop Scheduling Considering Preventive Maintenance [J]. Journal of Mechanical Engineering, 2021, 57(10): 220-230. |
[12] | ZHANG Yang, WU Baohai, XIA Weihong, ZHANG Ying, ZHAO Jing. Multi-objective Feed Optimization with Constant Cutting Force Constraints under Variable Cutting Depth [J]. Journal of Mechanical Engineering, 2021, 57(5): 242-250. |
[13] | LI Congbo, YU Bisheng, XIAO Qinge, SUN Xin, Lü Yan. A Cutting Parameter Energy-saving Optimization Method for CNC Turning Batch Processing Considering Tool Wear [J]. Journal of Mechanical Engineering, 2021, 57(1): 217-229. |
[14] | ZHAO Guang, JIN Xin, CUI Ying, FENG Zhifei, WANG Tingyue, XIONG Zhiliang. Contact Stiffness Identification Method Based on Modal Strain Energy [J]. Journal of Mechanical Engineering, 2020, 56(9): 147-153. |
[15] | HU Zhili, FAN Xinxin, HUA Lin. Forming Theory and Technology of Aluminum Alloy FSW Tailor Welded Blank [J]. Journal of Mechanical Engineering, 2020, 56(6): 206-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||