[1] AROLA D, WILLIAMS C L. Surface texture, fatigue, and the reduction in stiffness of fiber reinforced plastics[J]. Journal of Engineering Materials & Technology, 2002, 124(2):160-166. [2] NEUBER H. Theory of notch stresses[M]. Berlin Verlag, 1958. [3] AROLA D, WILLIAMS C L. Estimating the fatigue stress concentration factor of machined surfaces[J]. International Journal of Fatigue, 2002, 24(9):923-930. [4] CHAN, Kwai S. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques[J]. Surface Topography Metrology & Properties, 2015, 3(4):044006. [5] KANTZOS C, LAO J, ROLLETT A D, et al. Design of an interpretable convolutional neural network for stress concentration prediction in rough surfaces[J]. Materials Characterization, 2019, 158:109961. [6] MEDINA H, HINDERLITER B R. The stress concentration factor for slightly roughened random surfaces:Analytical solution[J]. International Journal of Solids and Structures, 2014, 51(10):2012-2018. [7] MEDINA H. A stress-concentration-formula generating equation for arbitrary shallow surfaces[J]. International Journal of Solids and Structures, 2015, 69-70:86-93. [8] CHENG Zhengkun, LU Wei, LIAO Ridong, et al. Surface stress concentration factor via Fourier representation and its application for machined surfaces[J]. International Journal of Solids and Structures, 2017, 113-114:108-117. [9] CHENG Zhengkun, Lu Wei, LIAO Ridong, et al. Fatigue notch factors prediction of rough specimen by the theory of critical distance[J]. International Journal of Fatigue, 2017, 104:195-205. [10] CHENG Zhengkun, LIAO Ridong. Effect of surface topography on stress concentration factor[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6):1141-1148. [11] MEREUTA V, BUCIUMEANU M, PALAGHIAN L. 3D roughness parameters as factors in determining the evolution of effective stress concentration factors in fatigue processes[J]. Applied Mechanics & Materials, 2012, 248:504-510. [12] LI Guowen, TANG Jinyuan, ZHOU Wei, et al. Fatigue life prediction of workpiece with 3D rough surface topography based on surface reconstruction technology[J]. Journal of Central South University, 2018, 25(9):2069-2075. [13] XU Shanhua, WANG Youde. Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile[J]. International Journal of Fatigue, 2015, 72:27-41. [14] 国家技术监督局. GB/T 3480-1997渐开线圆柱齿轮承载能力计算方法[S]. 北京:中国标准出版社, 1997. State Bureau of Technical Supervision. GB/T 3480-1997 calculation method for load bearing capacity of involute cylindrical gears[S]. Beijing:China Standard Press, 1997. [15] 刘忠明, 袁玉鹏, 肖伟中, 等. 大模数齿条齿根应力计算方法研究及测试[J]. 机械工程学报, 2016, 52(23):152-159. LIU Zhongming, YUAN Yupeng, XIAO Weizhong, et al. Research and test of large modulus rack root stress calculation method[J]. Journal of mechanical engineering, 2016, 52(23):152-159. [16] 胡维平, 杜明辉. 信号采样率对经验模态分解的影响研究[J]. 信号处理, 2007(4):637-640. HU Weiping, DU Minghui. The influence of signal sampling rate on empirical mode decomposition[J]. Signal Processing, 2007(4):637-640. [17] 陈兵奎, 高艳娥, 梁栋. 共轭曲线齿轮齿面的构建[J]. 机械工程学报, 2014, 50(3):18-24. CHEN Bingkui, GAO Yan'e, LIANG Dong. Construction of conjugate curve gear tooth surface[J]. Journal of Mechanical Engineering, 2014, 50(3):18-24. [18] 陈兵奎, 梁栋, 高艳娥. 齿轮传动共轭曲线原理[J]. 机械工程学报, 2014, 50(1):130-136. CHEN Bingkui, LIANG Dong, GAO Yane. Principle of conjugate curve of gear transmission[J]. Journal of Mechanical Engineering, 2014, 50(1):130-136. [19] 唐进元, 周长江, 吴运新. 齿轮弯曲强度有限元分析精确建模的探讨[J]. 机械科学与技术, 2004(10):1146-1149, 1248. TANG Jinyuan, ZHOU Changjiang, WU Yunxin. Discussion on accurate modeling of finite element analysis of gear bending strength[J]. Mechanical Science and Technology, 2004(10):1146-1149, 1248. [20] 张质子, 唐进元. 多条平面曲线数值合成新方法[J]. 机械传动, 2016, 40(9):167-169. ZHANG Zhizi, TANG Jinyuan. A new method for numerical synthesis of multiple plane curves[J]. Mechanical Transmission, 2016, 40(9):167-169. |