[1] IGLESIAS I, SEBASTIÁN M A, ARES J E. Overview of the state of robotic machining:Current situation and future potential[J]. Procedia Engineering, 2015, 132:911-917. [2] CHEN C, PENG F, YAN R, et al. Stiffness performance index based posture and feed orientation optimization in robotic milling process[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:29-40. [3] CHEN Xizhang, ZHU Zhenyou, CHEN Wenjie, et al. Vision-based recognition and guiding of initial welding position for arc-welding robot[J]. Chinese Journal of Mechanical Engineering, 2005(3):382-384. [4] XIONG G, DING Y, ZHU L M, et al. Stiffness-based pose optimization of an industrial robot for five-axis milling[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:19-28. [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12642-2013工业机器人性能规范及其试验方法[S]. 北京:中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 12642-2013 industrial robots-performance criteria and related test metheds[S]. Beijing:Standards Press of China, 2013. [6] ISO 9283. Manipulating industrial robots-performance criteria and related test methods[S]. Geneva:International Standards Organization, 1998. [7] 柯振辉, 朱华炳, 何双华. 六自由度串联机器人轨迹误差分析与试验研究[J]. 组合机床与自动化加工技术, 2018(10):64-67, 72. KE Zhenghui, ZHU Huabin, HE Shuanghua. Error analysis and experimental study of six-DOF serial robot[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2018(10):64-67, 72. [8] CORDES M, HINTZE W. Offline simulation of path deviation due to joint compliance and hysteresis for robot machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1):1075-1083. [9] VERDONCK W, SWEVERS J. Improving the dynamic accuracy of industrial robots by trajectory pre-compensation[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 2002:3423-3428. [10] 严浩, 白瑞林, 吉峰. 一种改进的SCARA机器人动力学参数辨识方法[J]. 中国机械工程, 2017, 28(22):2707-2713. YAN Hao, BAI Ruilin, JI Feng. An improved dynamics parameter identification method for SCARA robots[J]. China Mechanical Engineering, 2017, 28(22):2707-2713. [11] GAO G, LIU F, SAN H, et al. Hybrid optimal kinematic parameter identification for an industrial robot based on BPNN-PSO[J]. Complexity, 2018(1):1-11. [12] GAO M, CHEN D, YANG Y, et al. A fixed-distance planning algorithm for 6-DOF manipulators[J]. Industrial Robot:An International Journal, 2015, 42:586-599. [13] GARRIZ C, DOMINGO R. Development of trajectories through the kalman algorithm and application to an industrial robot in the automotive industry[J]. IEEE Access, 2019, 7:23570-23578. [14] 刘飞. 工业机器人运动学参数辨识及误差补偿研究[D]. 昆明:昆明理工大学, 2018. LIU Fei. Kinematics parameter identification and compensation of an industrial robot[D]. Kunming:Kunming University of Science and Technology, 2018. [15] CHEN Li, MA Ying, ZHANG Yu, et al. Obstacle avoidance and multitarget tracking of a super redundant modular manipulator based on bezier curve and particle swarm optimization[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1):71. [16] HENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. ASME Journal of Applied Mechanics, 1955, 77:215-221. [17] HARTENBERG R S, DENAVIT J. Kinematic synthesis of linkages[M]. New York:McGraw-Hill, 1964. [18] MOORING B W, ROTH Z S, DRIELS M R. Fundamentals of manipulator calibration[M]. New York:John Wiley & Sons, 1991. [19] GAO G, SUN G, NA J, et al. Structural parameter identification for 6 DOF industrial robots[J]. Mechanical Systems and Signal Processing, 2017, 113:145-155 [20] 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9):195-200. REN Yongjie, ZHU Jigui, YANG Xueyou, et al. Method of robot calibration based on laser tracker[J]. Journal of Mechanical Engineering, 2007, 43(9):195-200. [21] VEITSCHEGGER W K, WU C. Robot calibration and compensation[J]. IEEE Journal on Robotics and Automation, 1988, 4(6):643-656. [22] JAZWINSKI A H. Stochastic processes and filtering theory[M]. New York:Dover Publications, 2007. [23] SORENSON H. Kalman filtering:Theory and application[M]. New York:IEEE Press, 1985. [24] PARK I, LEE B, CHO S, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067. [25] 赵壮, 娄志峰, 张忠宁, 等. 符合阿贝原则的数控机床几何误差建模[J]. 光学精密工程, 2020, 28(4):885-897. ZHAO Zhuang, LOU Zhifeng, ZHANG Zhongning, et al. Geometric error model of CNN machine tools based on Abbe principle[J]. Optics and Precision Engineering, 2020, 28(4):885-897. [26] 朱嘉, 李醒飞, 谭文斌, 等. 基于激光干涉仪的测量机几何误差检定技术[J]. 机械工程学报, 2010, 46(10):25-30. ZHU Jia, LI Xingfei, TAN Wenbin, et al. Method of geometric error detection for measuring machine based on laser interferometer[J]. Journal of Mechanical Engineering, 2010, 46(10):25-30. [27] ZENG Y, TIAN W, LI D, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9):2745-2755. [28] 刘爱利, 王培法, 丁园园. 地统计学概论[M]. 北京:科学出版社, 2012. LIU Aili, WANG Peifa, DING Yuanyuan. Introduction to geostatistics[M]. Beijing:Science Press, 2012. [29] 周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程, 2012, 23(19):2306-2311. ZHOU Wei, LIAO Wenhe, TIAN Wei, et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering, 2012, 23(19):2306-2311. [30] 田威, 廖文和. 工业机器人精度补偿技术及应用[M]. 北京:科学出版社, 2019. TIAN Wei, LIAO Wenhe. Accuracy compensation technology and application of industrial robot[M]. Beijing:Science Press, 2019. [31] LEVENBERG K. A method for the solution of certain problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2:164-168. [32] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441. [33] CRAIG J. Introduction to robotics:Mechanics and control[M]. London:Pearson Education International, 2005. [34] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU Wei, LIAO Wenhe, TIAN Wei. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48. |