Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (19): 1-20.doi: 10.3901/JME.2021.19.001
NIU Lizhou, DING Liang, GAO Haibo, YANG Huaiguang, SU Yang, LI Nan
Received:
2020-10-07
Revised:
2021-03-25
Online:
2021-10-05
Published:
2021-12-13
CLC Number:
NIU Lizhou, DING Liang, GAO Haibo, YANG Huaiguang, SU Yang, LI Nan. Review of Actuation, Modeling and Simulation in Soft-legged Robot[J]. Journal of Mechanical Engineering, 2021, 57(19): 1-20.
[1] RAIBERT M,BLANKESPOOR K,NELSON G,et al. BigDog,the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes,2008,41(2):10822-10825. [2] WILCOX B H. ATHLETE:An option for mobile lunar landers[C]//Aerospace Conference. Big Sky,MT,USA:IEEE,2008:1-8. [3] KUINDERSMA S,DEITS R,FALLON M,et al. Optimization-based locomotion planning,estimation,and control design for the atlas humanoid robot[J]. Autonomous Robots,2016,40(3):429-455. [4] 徐丰羽,孟凡昌,范保杰,等.软体机器人驱动、建模与应用研究综述[J].南京邮电大学学报,2019,39(3):64-75. XU Fengyu,MENG Fanchang,FAN Baojie,et al. Review of driving methods,modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications,2019,39(3):64-75. [5] 傅珂杰,曹许诺,张桢,等.水下软体机器人柔性驱动方式及其仿生运动机理研究进展[J].科技导报,2017,35(18):44-51. FU Kejie,CAO Xunuo,ZHANG Zhen et al. A review of the flexible driving mode of underwater software robot and its mechanism of bionic movement[J]. Science&Technology Review,2017,35(18):44-51. [6] 李铁风,李国瑞,梁艺鸣,等.软体机器人结构机理与驱动材料研究综述[J].力学学报,2016,48(4):756-766. LI Tiefeng,LI Guorui,LIANG Yiming,et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(4):756-766。 [7] 曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3):25-33. CAO Yujun,SHANG Jianzhong,LIANG Keshan,et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering,2012,48(3):25-33. [8] 蒋国平,孟凡昌,申景金,等.软体机器人运动学与动力学建模综述[J].南京邮电大学学报,2018,38(1):20-26. JIANG Guoping,MENG Fanchang,SHEN Jingjin,et al. Review on kinematics and dynamics modeling for soft robots[J]. Journal of Nanjing University of Posts and Telecommunications,2018,38(1):20-26. [9] 牛丽周.软体仿生机械臂力学建模与实验验证[D].哈尔滨:哈尔滨工业大学,2019. NIU Lizhou. Mechanical modeling and experimental verification of soft biomimetic manipulator[D]. Harbin:Harbin Institute of Technology,2019. [10] 王田苗,郝雨飞,杨兴帮,等.软体机器人:结构、驱动、传感与控制[J].机械工程学报,2017,53(13):1-13. WANG Tianmiao,HAO Yufei,YANG Xingbang,et al. Soft robotics:Structure,actuation,sensing and control[J]. Journal of Mechanical Engineering,2017,53(13):1-13. [11] RUS D,TOLLEY M T. Design,fabrication and control of soft robots[J]. Nature,2015,521(7553):467-475. [12] RICH S I,WOOD R J,MAJIDI C. Untethered soft robotics[J]. Nature Electronics,2018,1(2):102-112. [13] CAO J,QIN L,LIU J,et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators[J]. Extreme Mechanics Letters,2018,21:9-16. [14] DAS A,NABI M. A review on soft robotics:Modeling,control and applications in human-robot interaction[C]//2019 International Conference on Computing,Communication,and Intelligent Systems (ICCCIS). Greater Noida,India:IEEE,2019:306-311. [15] 李海利,姚建涛,周盼,等.无系留大负载软体抓持机器人研究发展综述[J].机械工程学报,2020,56(19):28-42. LI Haili,YAO Jiantao,ZHOU Pan,et al. Untethered,high-load soft gripping robots:A review[J]. Journal of Mechanical Engineering,2020,56(19):28-42. [16] RENDA F,GIORGIO-SERCHI F,BOYER F,et al. A unified multi-soft-body dynamic model for underwater soft robots[J]. The International Journal of Robotics Research,2018,37(6):648-666. [17] TRIVEDI D,RAHN C D,KIER W M,et al. Soft robotics:Biological inspiration,state of the art,and future research[J]. Applied Bionics and Biomechanics,2008,5(3):99-117. [18] SHIH B,SHAH D,LI J,et al. Electronic skins and machine learning for intelligent soft robots[J]. Science Robotics,2020,5(41):eeaz9239. [19] LASCHI C,MAZZOLAI B,CIANCHETTI M. Soft robotics:Technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics,2016,1(1):eeah3690. [20] WHITESIDES G M. Soft-Robotik[J]. Angewandte Chemie,2018,130(16):4336-4353. [21] SUZUMORI K,IIKURA S,TANAKA H. Development of flexible microactuator and its applications to robotic mechanisms[C]//1991 IEEE International Conference on Robotics and Automation. Sacramento,California,April:IEEE Comput. Soc. Press,1991:1622-1627. [22] SHEPHERD R F,ILIEVSKI F,CHOI W,et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences,2011,108(51):20400-20403. [23] MORIN S A,SHEPHERD R F,KWOK S W,et al. Camouflage and display for soft machines[J]. Science,2012,337(6096):828-832. [24] TOLLEY M T,SHEPHERD R F,MOSADEGH B,et al. A resilient,untethered soft robot[J]. Soft Robotics,2014,1(3):213-223. [25] KWOK S W,MORIN S A,MOSADEGH B,et al. Magnetic assembly of soft robots with hard components[J]. Advanced Functional Materials,2014,24(15):2180-2187. [26] STOKES A A,SHEPHERD R F,MORIN S A,et al. A hybrid combining hard and soft robots[J]. Soft Robotics,2014,1(1):70-74. [27] NEMIROSKI A,SHEVCHENKO Y Y,STOKES A A,et al. Arthrobots[J]. Soft Robotics,2017,4(3):183-190. [28] RANZANI T,RUSSO S,BARTLETT N W,et al. Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials,2018,30(38):1802739. [29] VASIOS N,GROSS A J,SOIFER S,et al. Harnessing viscous flow to simplify the actuation of fluidic soft robots[J]. Soft Robotics,2020,7(1):1-9. [30] DROTMAN D,JADHAV S,KARIMI M,et al. 3D printed soft actuators for a legged robot capable of navigating unstructured terrain[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore:IEEE,2017:5532-5538. [31] ISHIDA M,DROTMAN D,SHIH B,et al. Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot[J]. IEEE Robotics and Automation Letters,2019,4(4):4163-4169. [32] FRAS J,NOH Y,MACIAS M,et al. Bio-inspired octopus robot based on novel soft fluidic actuator[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane,Australia:IEEE,2018:1583-1588. [33] ZATOPA A,WALKER S,MENGUC Y. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots[J]. Soft Robotics,2018,5(3):258-271. [34] YIRMIBEŞOĞLU O D,OSHIRO T,OLSON G,et al. Evaluation of 3D printed soft robots in radiation environments and comparison with molded counterparts[J]. Frontiers in Robotics and AI,2019,6:1-14. [35] DUGGAN T,HOROWITZ L,ULUG A,et al. Inchworm-inspired locomotion in untethered soft robots[C]//2019 2nd IEEE International Conference on Soft Robotics,Seoul,Korea:IEEE,2019:200-205. [36] TANG Y,CHI Y,SUN J,et al. Leveraging elastic instabilities for amplified performance:Spine-inspired high-speed and high-force soft robots[J]. Science Advances,2020,6(19):eeaz6912. [37] GUO H,ZHANG J,WANG T,et al. Design and control of an inchworm-inspired soft robot with omega-arching locomotion[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore,2017:IEEE,2017:4154-4159. [38] WU P,JIANGBEI W,YANQIONG F. The structure,design,and closed-loop motion control of a differential drive soft robot[J]. Soft Robotics,2018,5(1):71-80. [39] 郭祥.软体爬行机器人状态识别及控制研究[D].哈尔滨工业大学,2018. GUO Xiang. Research on status recognition and control of soft reptile robot[D]. Harbin:Harbin Institute of Technology,2018. [40] 姚建涛,陈新博,陈俊涛,等.轮足式仿生软体机器人设计与运动分析[J].机械工程学报,2019,55(5):27-35. YAO Jiantao,CHEN Xinbo,CHEN Juntao,et al. Design and motion analysis of a wheel-walking bionic soft robot[J]. Journal of Mechanical Engineering,2019,55(5):27-35. [41] 陈阳,徐晓丹,李向攀.基于Arduino控制的气动软体仿生四足机器人结构设计及步态规划[J].液压与气动,2020(5):86-90. CHEN Yang,XU Xiaodan,LI Xiangpan. Structural design and gait planning of pneumatic soft bionic quadruped robot based on arduino control[J]. Chinese Hydraulics&Pneumatics,2020(5):86-90. [42] FAN J,WANG S,YU Q,et al. Swimming performance of the frog-inspired soft robot[J]. Soft Robotics,2020,7(5):615-626. [43] 管清华,孙健,刘彦菊,等.气动软体机器人发展现状与趋势[J].中国科学:技术科学,2020,50(7):897-934. GUAN Qinghua,SUN Jian,LIU Yanju,et al. Status of and trends in soft pneumatic robotics[J]. Scientia Sinica Technologica,2020,50(7):897-934. [44] BARTLETT N W,TOLLEY M T,OVERVELDE J T B,et al. A 3D-printed,functionally graded soft robot powered by combustion[J]. Science,2015,349(6244):161-165. [45] WEHNER M,TRUBY R L,FITZGERALD D J,et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature,2016,536(7617):451-455. [46] TOLLEY M T,SHEPHERD R F,KARPELSON M,et al. An untethered jumping soft robot[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago,IL,USA:IEEE,2014:561-566. [47] SHEPHERD R F,STOKES A A,FREAKE J,et al. Using explosions to power a soft robot[J]. Angewandte Chemie International Edition,2013,52(10):2892-2896. [48] MAEDA S,HARA Y,SAKAI T,et al. Self-walking gel[J]. Advanced Materials,2007,19(21):3480-3484. [49] CHANG Y,KIM W. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):547-555. [50] 闫继宏,石培沛,张新彬,等.软体机械臂仿生机理、驱动及建模控制研究发展综述[J].机械工程学报,2018,54(15):1-14. YAN Jihong,SHI Peipei,ZHANG Xinbin,et al. Review of biomimetic mechanism,actuation,modeling and control in soft manipulators[J]. Journal of Mechanical Engineering,2018,54(15):1-13. [51] HE Q,WANG Z,WANG Y,et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation[J]. Science Advances,2019,5(10):eeax5746. [52] MORALES D,PALLEAU E,DICKEY M D,et al. Electro-actuated hydrogel walkers with dual responsive legs[J]. Soft Matter,2014,10(9):1337-1348. [53] PEI Q,ROSENTHAL M,STANFORD S,et al. Multiple-degrees-of-freedom electroelastomer roll actuators[J]. Smart Materials and Structures,2004,13(5):N86-N92. [54] CANH T N,HOA P,PHI T H,et al. Development of an insect-inspired hexapod robot actuated by soft actuators[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2018,10(6):061016. [55] NGUYEN C T,PHUNG H,NGUYEN T D,et al. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot[J]. Sensors and Actuators A:Physical,2017,267:505-516. [56] NGUYEN C T,PHUNG H,JUNG H,et al. Printable monolithic hexapod robot driven by soft actuator[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle,WA,USA:IEEE,2015:4484-4489. [57] GU G,ZOU J,ZHAO R,et al. Soft wall-climbing robots[J]. Science Robotics,2018,3(25):eeat2874. [58] LI T,ZOU Z,MAO G,et al. Agile and resilient insect-scale robot[J]. Soft Robotics,2019,6(1):133-141. [59] JI X,LIU X,CACUCCIOLO V,et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics,2019,4(37):eeaz6451. [60] KIM B,RYU J,JEONG Y,et al. A ciliary based 8-legged walking micro robot using cast IPMC actuators[C]//2003 IEEE International Conference on Robotics and Automation. Taipei,Taiwan,China:IEEE,2003:2940-2945. [61] MUST I,KAASIK F,PÕLDSALU I,et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials,2015,17(1):84-94. [62] OHM C,BREHMER M,ZENTEL R. Liquid crystalline elastomers as actuators and sensors[J]. Advanced Materials,2010,22(31):3366-3387. [63] 张亚坤,张宇,李博,等.聚合物捻卷型人工肌肉及其在软体机器人领域应用的研究现状[J].中国科学:技术科学,2020(1):1-18. ZHANG Yakun,ZHANG Yu,LI Bo,et al. Progress of twisted and coiled polymer fiber artificial muscles and its application in soft robots[J]. Scientia Sinica Technologica,2020(1):1-18. [64] 左伟东.人工肌肉驱动的仿生六足软体机器人设计与实验研究[D].哈尔滨:哈尔滨工业大学,2019. ZUO Weidong. Design and experimental research of bionic hexapod soft robot driven by artificial muscle[D]. Harbin:Harbin Institute of Technology,2019. [65] TANG X,LI K,LIU Y,et al. A soft crawling robot driven by single twisted and coiled actuator[J]. Sensors and Actuators A:Physical,2019,291:80-86. [66] WU Y,HO K Y,KARIYA K,et al. PRE-curved PVDF/PI unimorph structures for biomimic soft crawling actuators[C]//2018 IEEE Micro Electro Mechanical Systems (MEMS). Belfast,UK:IEEE,2018:581-584. [67] WU Y,YIM J K,LIANG J,et al. Insect-scale fast moving and ultrarobust soft robot[J]. Science Robotics,2019,4(32):eeax1594. [68] PARK T,CHA Y. Soft mobile robot inspired by animal-like running motion[J]. Scientific Reports,2019,9(1):14700. [69] LIN H T,LEISK G G,TRIMMER B. GoQBot:A caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration&Biomimetics,2011,6(2):26007. [70] MAO S,DONG E,ZHANG S,et al. A new soft bionic starfish robot with multi-gaits[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Wollongong,Australia:IEEE,2013:1312-1317. [71] JIN H,DONG E,ALICI G,et al. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires[J]. Bioinspiration&Biomimetics,2016,11(5):56012. [72] HUANG X,KUMAR K,KHALID JAWED M,et al. Soft electrically actuated quadruped (SEAQ)-Integrating a flex circuit board and elastomeric limbs for versatile mobility[J]. IEEE Robotics and Automation Letters,2019,4(3):2415-2422. [73] PATTERSON Z J,SABELHAUS A P,CHIN K,et al. An untethered brittle star robot for closed-loop underwater locomotion[J]. arXiv,2020. arXiv:2003.13529v2. [74] OTAKE M,KAGAMI Y,INABA M,et al. Motion design of a starfish-shaped gel robot made of electro-active polymer gel[J]. Robotics and Autonomous Systems,2002,40(2):185-191. [75] LI H,GO G,KO S Y,et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures,2016,25(2):27001. [76] HU W,LUM G Z,MASTRANGELI M,et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature,2018,554(7690):81-85. [77] LU H,ZHANG M,YANG Y,et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions[J]. Nature Communications,2018,9(1):3944. [78] KIM Y,YUK H,ZHAO R,et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature,2018,558(7709):274-279. [79] KIM Y,PARADA G A,LIU S,et al. Ferromagnetic soft continuum robots[J]. Science Robotics,2019,4(33):eeax7329. [80] CUI J,HUANG T,LUO Z,et al. Nanomagnetic encoding of shape-morphing micromachines[J]. Nature,2019,575(7781):164-168. [81] ZHAO X,KIM Y. Soft microbots controlled by nanomagnets[J]. Nature,2019,575(7781):58-59. [82] 苏梦.磁控软体微型机器人的优化设计与控制[D].深圳:中国科学院大学(中科院深圳先进技术研究院),2020. SU Meng. Optimization design and control of soft microrobot driven by magnetic field[D]. Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences),2020. [83] SHIN B,HA J,LEE M,et al. Hygrobot:A self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3(14):eear2629. [84] ZENG H,WANI O M,WASYLCZYK P,et al. Light-driven,caterpillar-inspired miniature inching robot[J]. Macromolecular Rapid Communications,2018,39(1):1700224. [85] AHN C,LIANG X,CAI S. Bioinspired design of light-powered crawling,squeezing,and jumping untethered soft robot[J]. Advanced Materials Technologies,2019,4(7):1900185. [86] PILZ DA CUNHA M,AMBERGEN S,DEBIJE M G,et al. A soft transporter robot fueled by light[J]. Advanced Science,2020,7(5):1902842. [87] WANG X,YANG B,TAN D,et al. Bioinspired footed soft robot with unidirectional all-terrain mobility[J]. Materials Today,2020,35:42-49. [88] WANG X Q,CHAN K H,CHENG Y,et al. Somatosensory,light-driven,thin-film robots capable of integrated perception and motility[J]. Advanced Materials,2020,32(21):2000351. [89] LASCHI C,CIANCHETTI M,MAZZOLAI B,et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics,2012,26(7):709-727. [90] CALISTI M,GIORELLI M,LEVY G,et al. An octopus-bioinspired solution to movement and manipulation for soft robots[J]. Bioinspiration&Biomimetics,2011,6(3):36002. [91] CALISTI M,GIORELLI M,LASCHI C. A locomotion strategy for an octopus-bioinspired robot[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2012. [92] CALISTI M,ARIENTI A,RENDA F,et al. Design and development of a soft robot with crawling and grasping capabilities[C]//IEEE International Conference on Robotics and Automation. Saint Paul,MN,USA:IEEE,2012:4950-4955. [93] SFAKIOTAKIS M,KAZAKIDI A,TSAKIRIS D P. Octopus-inspired multi-arm robotic swimming[J]. Bioinspiration&Biomimetics,2015,10(3):35005. [94] SFAKIOTAKIS M,KAZAKIDI A,PATEROMICHELAKIS N,et al. Octopus-inspired eight-arm robotic swimming by sculling movements[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe,Germany:IEEE,2013:5155-5161. [95] ARIENTI A,CALISTI M,GIORGIO-SERCHI F,et al. PoseiDRONE:Design of a soft-bodied ROV with crawling,swimming and manipulation ability[C]//MTS/IEEE OCEANS. San Diego,USA:MTS,2013:1-7. [96] GIORGIO SERCHI F,ARIENTI A,LASCHI C. Biomimetic vortex propulsion:Toward the new paradigm of soft unmanned underwater vehicles[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):484-493. [97] CIANCHETTI M,CALISTI M,MARGHERI L,et al. Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J]. Bioinspiration&Biomimetics,2015,10(3):35003. [98] CACUCCIOLO V,YASMIN A,SHOUSHTARI A L,et al. Adaptive locomotion on uneven terrains by means of a functional separation of time scales in the design and control of robots[C]//7th International Symposium on Adaptive Motion of Animals and Machines,AMAM. 2015:1-3. [99] SADEGHI A,MONDINI A,DEL DOTTORE E,et al. Soft-legged wheel-based robot with terrestrial locomotion abilities[J]. Frontiers in Robotics and AI,2016,3:1-10. [100] JAYARAM K,FULL R J. Cockroaches traverse crevices,crawl rapidly in confined spaces,and inspire a soft,legged robot[J]. Proceedings of the National Academy of Sciences,2016,113(8):E950-E957. [101] MALLEY M,RUBENSTEIN M,NAGPAL R. Flippy:A soft,autonomous climber with simple sensing and control[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver,BC,Canada:IEEE,2017:6533-6540. [102] ROZEN-LEVY S,MESSNER W,TRIMMER B A. The design and development of Branch Bot:A branch-crawling,caterpillar-inspired,soft robot[J]. The International Journal of Robotics Research,2019:1-13. DOI:10.1177/0278364919846358 [103] KALN M A I,AYGUL C,TURKMEN A,et al. Design,fabrication,and locomotion analysis of an untethered miniature soft quadruped,SQuad[J]. IEEE Robotics and Automation Letters,2020,5(3):3854-3860. [104] LI Y,CHEN Y,REN T,et al. Precharged pneumatic soft actuators and their applications to untethered soft robots[J]. Soft Robotics,2018,5(5):567-575. [105] LI Y,FISH F,CHEN Y,et al. Bio-inspired robotic dog paddling:kinematic and hydro-dynamic analysis[J]. Bioinspiration&Biomimetics,2019,14(6):66008. [106] LI Y,REN T,LI Y,et al. Untethered-bioinspired quadrupedal robot based on double-chamber pre-charged pneumatic soft actuators with highly flexible trunk[J]. Soft Robotics,2020(1):1-12. [107] MAZZOLAI B,LASCHI C,CIANCHETTI M,et al. Biorobotic investigation on the muscle structure of an octopus tentacle[C]//Proceedings of the 29th Annual International Conference of the IEEE EMBS. Lyon,France:IEEE,2007:1471-1474. [108] YEKUTIELI Y,MITELMAN R,HOCHNER B,et al. Analyzing octopus movements using three-dimensional reconstruction[J]. Journal of Neurophysiology,2007,98(3):1775-1790. [109] SAUNDERS F,TRIMMER B A,RIFE J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics[J]. Bioinspiration&Biomimetics,2011,6(1):16001. [110] GAMUS B,SALEM L,GAT A D,et al. Understanding inchworm crawling for soft-robotics[J]. IEEE Robotics and Automation Letters,2020,5(2):1397-1404. [111] WEBSTER R J,JONES B A. Design and kinematic modeling of constant curvature continuum robots:A review[J]. The International Journal of Robotics Research,2010,29(13):1661-1683. [112] 俞晓瑾.柔性机械臂的运动学和动力学建模及视觉伺服控制[D].上海:上海交通大学,2013. YU Xiaojin,Kinematics and dynamics modeling and visual servo control for soft robotic manipulator[D]. Shanghai:Shanghai Jiao Tong University,2015. [113] 王超.线驱动硅胶软体机械臂建模与控制[D].上海交通大学,2015. WANG Chao,Dynamics and control of cable-driven silicone soft manipulator[D]. Shanghai:Shanghai Jiao Tong University,2015. [114] XU F,WANG H,WANG J,et al. Underwater dynamic visual servoing for a soft robot arm with online distortion correction[J]. IEEE/ASME Transactions on Mechatronics,2019,24(3):979-989. [115] DELLA SANTINA C,BICCHI A,RUS D. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control[J]. IEEE Robotics and Automation Letters,2020,5(2):1001-1008. [116] GONG Z,FANG X,CHEN X,et al. A soft manipulator for efficient delicate grasping in shallow water:Modeling,control,and real-world experiments[J]. The International Journal of Robotics Research,2020(1):1-21. [117] YEKUTIELI Y,SAGIV-ZOHAR R,AHARONOV R,et al. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement[J]. Journal of Neurophysiology,2005,94(2):1443-1458. [118] KANG R,KAZAKIDI A,GUGLIELMINO E,et al. Dynamic model of a hyper-redundant,octopus-like manipulator for underwater applications[C]//Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco,CA:IEEE,2011:4054-4059. [119] LI T,NAKAJIMA K,KUBA M,et al. From the octopus to soft robots control:An octopus inspired behavior control architecture for soft robots[J]. VIE ET MILIEU-LIFE AND ENVIRONMENT,2011,61(4):211-217. [120] KANG R,BRANSON D T,GUGLIELMINO E,et al. Dynamic modeling and control of an octopus inspired multiple continuum arm robot[J]. Computers&Mathematics with Applications,2012,64(5):1004-1016. [121] ZHENG T,GODAGE I S,BRANSON D T,et al. Octopus inspired walking robot:Design,control and experimental validation[C]//2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe,Germany:IEEE,2013:816-821. [122] ZHENG T,BRANSON D T,GUGLIELMINO E,et al. A 3D dynamic model for continuum robots inspired by an octopus arm[C]//2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai,China:IEEE,2011:3652-3657. [123] TRIVEDI D,LOTFI A,RAHN C D. Geometrically exact models for soft robotic manipulators[J]. IEEE Transactions on Robotics,2008,24(4):773-780. [124] RUCKER D C,JONES B A,WEBSTER III R J. A geometrically exact model for externally loaded concentric-tube continuum robots[J]. IEEE Transactions on Robotics,2010,26(5):769-780. [125] RENDA F,CIANCHETTI M,GIORELLI M,et al. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm[J]. Bioinspiration&Biomimetics,2012,7(2):25006. [126] GIORELLI M,RENDA F,CALISTI M,et al. Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature[J]. IEEE Transactions on Robotics,2015,31(4):823-834. [127] GIORELLI M,RENDA F,CALISTI M,et al. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space[J]. Bioinspiration&Biomimetics,2015,10(3):35006. [128] RENDA F,GIORELLI M,CALISTI M,et al. Dynamic model of a multibending soft robot arm driven by cables[J]. IEEE Transactions on Robotics,2014,30(5):1109-1122. [129] RENDA F,BOYER F,DIAS J,et al. Discrete cosserat approach for multisection soft manipulator dynamics[J]. IEEE Transactions on Robotics,2018,34(6):1518-1533. [130] RENDA F,CACUCCIOLO V,DIAS J,et al. Discrete Cosserat approach for soft robot dynamics:A new piece-wise constant strain model with torsion and shears[C]//Proc. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon,South Korea:IEEE,2016:5495-5502. [131] CALISTI M,CORUCCI F,ARIENTI A,et al. Dynamics of underwater legged locomotion:Modeling and experiments on an octopus-inspired robot[J]. Bioinspiration&Biomimetics,2015,10(4):46012. [132] VAVOURAKIS V,BAMPASAKIS D,KAZAKIDI A,et al. Generation of primitive behaviors for non-linear hyperelastic octopus-inspired robotic arm[C]//The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma,Italy:IEEE,2012:725-730. [133] VAVOURAKIS V,KAZAKIDI A,TSAKIRIS D P,et al. A finite element method for non-linear hyperelasticity applied for the simulation of octopus arm motions[C]//International Conference on Computational Methods for Coupled Problems in Science and Engineering. Kos,GREECE:Int Center Numerical Methods Engineering,2011:147-159. [134] GODAGE I S,BRANSON D T,GUGLIELMINO E,et al. Shape function-based kinematics and dynamics for variable length continuum robotic arms[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai,China:IEEE,2011:452-457. [135] GODAGE I S,NANAYAKKARA T,CALDWELL D G. Locomotion with continuum limbs[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura,Algarve,Portugal:IEEE,2012:293-298. [136] HU H,TIAN Q,LIU C. Computational dynamics of soft machines[J]. Acta Mechanica Sinica,2017,33(3):516-528. [137] HU H,TIAN Q,LIU C. Soft machines:Challenges to computational dynamics[J]. Procedia IUTAM,2017,20:10-17. [138] 费燕琼,庞武,于文博.气压驱动软体机器人运动研究[J].机械工程学报,2017,53(13):14-18. FEI Yanqiong,PANG Wu,YU Wenbo. Movement of air-driven soft robot[J]. Journal of Mechanical Engineering,2017,53(13):14-18. [139] ZHANG Z,BIEZE T M,DEQUIDT J,et al. Visual servoing control of soft robots based on finite element model[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver,BC,Canada:IEEE,2017:2895-2901. [140] ZHANG Z,DEQUIDT J,DURIEZ C. Vision-based sensing of external forces acting on soft robots using finite element method[J]. IEEE Robotics and Automation Letters,2018,3(3):1529-1536. [141] BIEZE T M,LARGILLIERE F,KRUSZEWSKI A,et al. Finite element method-based kinematics and closed-loop control of soft,continuum manipulators[J]. Soft Robotics,2018,5(3):348-364. [142] THIEFFRY M,KRUSZEWSKI A,DURIEZ C,et al. Control design for soft robots based on reduced-order model[J]. IEEE Robotics and Automation Letters,2019,4(1):25-32. [143] GOURY O,DURIEZ C. Fast,generic,and reliable control and simulation of soft robots using model order reduction[J]. IEEE Transactions on Robotics,2018,34(6):1565-1576. [144] ZHENG G. Control of a silicone soft tripod robot via uncertainty compensation[J]. IEEE Robotics and Automation Letters,2020,5(2):2801-2807. [145] ZHENG G,ZHOU Y,JU M. Robust control of a silicone soft robot using neural networks[J]. ISA Transactions,2020,100:38-45. [146] ROßMANN J,SCHLUSE M,RAST M,et al. Soft robotics:Transferring theory to application[M]. Berlin,Heidelberg:Springer,2015. [147] POLYGERINOS P,WANG Z,OVERVELDE J T B,et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics,2015,31(3):778-789. [148] LIPSON H. Challenges and opportunities for design,simulation,and fabrication of soft robots[J]. Soft Robotics,2014,1(1):21-27. [149] LIANG Y,MCMEEKING R M,EVANS A G. A finite element simulation scheme for biological muscular hydrostats[J]. Journal of Theoretical Biology,2006,242(1):142-150. [150] SUN H H,ZHAO A W,ZHANG M F,et al. The analysis model of torsion behavior for octopus-inspired robotic arm[J]. Applied Mechanics and Materials,2013,461:917-923. [151] RUNGE G,RAATZ A. A framework for the automated design and modelling of soft robotic systems[J]. CIRP Annals-Manufacturing Technology,2017,66(1):9-12. [152] WEI F,ZHENG J,YU C. A novel soft robot based on organic materials:Finite element simulation and precise control[C]//International Conference on Intelligent Robotics and Applications. Wuhan,China:Springer, Verlag,2017:103-109. [153] JOYEE E B,PAN Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation[J]. Soft Robotics,2019,6(3):333-345. [154] NIU L,DING L,GAO H,et al. Closed-form equations and experimental verification for soft robot arm based on Cosserat theory[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau,China:IEEE,2019:6630-6635. [155] HILLER J,LIPSON H. Dynamic simulation of soft multimaterial 3D-printed objects[J]. Soft Robotics,2014,1(1):88-101. [156] GERMANN J,MAESANI A,STOCKLI M,et al. Soft cell simulator:A tool to study soft multi-cellular robots[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen,China:IEEE,2013:1300-1305. [157] COEVOET E,MORALES-BIEZE T,LARGILLIERE F,et al. Software toolkit for modeling,simulation,and control of soft robots[J]. Advanced Robotics,2017,31(22):1208. [158] DURIEZ C,COEVOET E,LARGILLIERE F,et al. Framework for online simulation of soft robots with optimization-based inverse model[C]//IEEE International Conference on Simulation,Modeling,and Programming for Autonomous Robots. San Francisco,USA,Dec. 13-16,2016:IEEE,2016:111-118. [159] 陈君.一种刚软混杂机器人系统的耦合仿真方法[D].深圳:中国科学院大学(中科院深圳先进技术研究院),2019. CHEN Jun. A coupled simulation appraoch for rigid-soft hybrid robotic systems[D]. Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences). 2019. [160] BERN J M,CHANG K,COROS S. Interactive design of animated plushies[J]. ACM Transactions on Graphics,2017,36(4):1-11. [161] FANG G,MATTE C,KWOK T,et al. Geometry-based direct simulation for multi-material soft robots[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane,QLD,Australia:IEEE,2018:4194-4199. [162] FANG G,MATTE C,SCHARFF R B N,et al. Kinematics of soft robots by geometric computing[J]. IEEE Transactions on Robotics,2020,36(4):1272-1286. [163] HU Y,FANG Y,GE Z,et al. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling[J]. ACM Transactions on Graphics,2018,37(4):1-14. [164] HU Y,LIU J,SPIELBERG A,et al. ChainQueen:A real-time differentiable physical simulator for soft robotics[C]//2019 IEEE International Conference on Robotics and Automation (ICRA). Montreal,QC,Canada:IEEE,2019:6265-6271. [165] MIN S,WON J,LEE S,et al. SoftCon:Simulation and control of soft-bodied animals with biomimetic actuators[J]. ACM Transactions on Graphics,2019,38(6):1-12. [166] HUANG W,HUANG X,MAJIDI C,et al. Dynamic simulation of articulated soft robots[J]. Nature Communications,2020,11(1):1-9. [167] LIN H,LEISK G G,TRIMMER B A. Soft robots in space:A perspective for soft robotics[J]. Acta Futura,2013(6):69-79. [168] JING Z,QIAO L,PAN H,et al. An overview of the configuration and manipulation of soft robotics for on-orbit servicing[J]. Science China Information Sciences,2017,60(5):50201. [169] 韩亮亮,杨健,赵颖,等.基于仿章鱼软体机器人空间碎片柔性自适应捕获装置的设想[J].载人航天,2017,23(4):469-472. HAN Liangliang,YANG Jian,ZHAO Ying,et al. Assumption on flexible adaptive orbital debris capture device based on octopus-inspired pneumatic soft robot[J]. Manned Spaceflight,2017,23(4):469-472. [170] TANG J,YAO C,GU Z,et al. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space[J]. Angewandte Chemie International Edition,2020,59(6):2490-2495. |
[1] | WU Jie, DANG Jiaqiang, LI Yugang, CHEN Dong, AN Qinglong, WANG Haowei, CHEN Ming. Study on Strengthening Mechanism and Anti-fatigue Performance of Stress Ultrasonic Rolling [J]. Journal of Mechanical Engineering, 2024, 60(9): 127-136. |
[2] | YANG Weifeng, LIU Jianhua, Lü Naijing, MA Jiangtao. Method of Cable Dynamic Simulation Based on PBD [J]. Journal of Mechanical Engineering, 2024, 60(6): 21-31,57. |
[3] | CHAI Yiyang, ZHANG Lele, DOU Weiyuan, ZHANG Haifeng. Parallel NSGA-III Based Multi-objective Optimization for Side Wall Section Size of High-speed Train Car-body [J]. Journal of Mechanical Engineering, 2024, 60(6): 321-333. |
[4] | HUA Dongpeng, ZHOU Qing, WANG Wan, LI Shuo, WANG Zhijun, WANG Haifeng. A Molecular Dynamics Simulation on the Subsurface Damage Mechanism in the Nano-polishing Process of Silicon Carbide [J]. Journal of Mechanical Engineering, 2024, 60(5): 231-240. |
[5] | JIA Kang, WANG Hao, REN Dongxu, HONG Jun. An Installation Model and Interference-free Design Method for Cylindrical Power Skiving Tools [J]. Journal of Mechanical Engineering, 2024, 60(5): 352-361. |
[6] | ZHAO Chuanjun, WANG Jipeng, XU Lizhong. Research on Accuracy and Localization Characterization of Pulse Electrochemical Micromachining Based on Equivalent Physical Model [J]. Journal of Mechanical Engineering, 2024, 60(5): 378-389. |
[7] | HU Long, LIU Hongyan, CHENG Huimei, CHEN Weiqi, FENG Guangjie, YE Yanhong, DENG Dean. Study on Residual Stress of Multi-layer and Multi-pass Butt-welded Joint for Ultra-high Strength Wear-resistant Steel NM500 [J]. Journal of Mechanical Engineering, 2024, 60(4): 335-344. |
[8] | LI Ying, ZHANG Jiafang, ZHANG Zhaoyong, WANG Xincheng, ZHANG Jin, KONG Xiangdong. Design of Minimum Diameter of Piston Neck in Swashplate Axial Piston Pump [J]. Journal of Mechanical Engineering, 2024, 60(4): 430-437. |
[9] | LIU Xiaofei, WAN Bo, WANG Yu, LI Mingyu, ZHAO Yongsheng. Design, Analysis and Performance Optimization of a Novel Super-redundantly Actuated Hybrid Robot [J]. Journal of Mechanical Engineering, 2024, 60(3): 55-67. |
[10] | JI Jiaxin, PENG Cheng, XIANG Chong, HUANG Le, GUO Fei. A Method for Predicting the Wear Life of the Step Seal Considering Variable Speed Conditions [J]. Journal of Mechanical Engineering, 2024, 60(3): 191-202. |
[11] | ONG Jun, TANG Qian, LUO Zhichao, FENG Qixiang, NIE Yunfei, REN Zhihao. Mesoscopic Numerical Simulation during Selective Laser Melting of Maraging Steel [J]. Journal of Mechanical Engineering, 2024, 60(3): 282-295. |
[12] | SHI Yilei, QUAN Yinzhu, XU Haiying, WANG Zhuang, MA Wenlong, PENG Yong. Factors Analysis on the Electron Beam Waist Position of Gas Discharger Electron Beam Gun of Coaxial Beam Wire [J]. Journal of Mechanical Engineering, 2024, 60(3): 328-336. |
[13] | ZONG Chaoyong, LI Qingye, PENG Yue, YANG Guanghong, ZHOU Weihao, XIAO Jian, SONG Xueguan. Dynamic Modeling and Analysis of the Main Steam Relief Isolation Valve (MSRIV) Used in Nuclear Power Plants [J]. Journal of Mechanical Engineering, 2024, 60(20): 339-350. |
[14] | HU Chengliang, MIAO Hongliang, ZENG Fan, ZHAO Zhen, TANG Minjun, TANG Xiaofeng. Prediction Model of Magnetic Induction Strength of Soft Magnetic Materials under Hot Forming Conditions [J]. Journal of Mechanical Engineering, 2024, 60(2): 132-139,149. |
[15] | FAN Ding, LI Dequan, HOU Yingjie, HUANG Jiankang, FENG Yi. Numerical Analysis of the Coupled Arc-weld Pool Behaviors in GMAW Buried-arc Welding [J]. Journal of Mechanical Engineering, 2024, 60(2): 159-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||