[1] 李静, 高华钰, 沈南燕, 等. 复杂轴类零件非圆轮廓接触式随动测量方法[J]. 机械工程学报, 2018, 54(5):38-46. LI Jing, GAO Huayu, SHEN Nanyan, et al. Tracing measurement method for non-circular contour of complex shafts[J]. Journal of Mechanical Engineering, 2018, 54(5):38-46. [2] WEGENER K, BLEICHER F, KRAJNIK P, et al. Recent developments in grinding machines[J]. CIRP Annals-Manufacturing Technology, 2017, 66(2):779-802. [3] QUINTANA G, CIURANA J. Chatter in machining processes:A review[J]. International Journal of Machine Tools and Manufacture, 2011, 51(5):363-376. [4] INASAKI I, KARPUSCHEWSKI B, LEE H S. Grinding chatter-origin and suppression[J]. CIRP Annals-Manufacturing Technology, 2001, 50(2):515-534. [5] HASHIMOTO F, YOSHIOKA J, MIYASHITA M, et al. Sequential estimation of growth rate of chatter vibration in grinding processes[J]. CIRP Annals-Manufacturing Technology, 1985, 34(1):271-275. [6] LI H, SHIN Y C. A study on chatter boundaries of cylindrical plunge grinding with process condition-dependent dynamics[J]. International Journal of Machine Tools and Manufacture, 2007, 47(10):1563-1572. [7] LI H, SHIN Y C. A time-domain dynamic model for chatter prediction of cylindrical plunge grinding processes[J]. Journal of Manufacturing Science and Engineering, 2006, 128(2):404-415. [8] 蒋永翔, 王太勇, 张莹, 等. 外圆切入磨再生颤振稳定性理论及评价方法[J]. 天津大学学报, 2009, 42(4):283-286. JIANG Yongxiang, WANG Taiyong, ZHANG Ying, et al. Analysis of regenerative chatter stability theory and evaluation method on cylindrical plunging grinding[J]. Journal of Tianjing University, 2009, 42(4):283-286. [9] LIU Z, PAYRE G. Stability analysis of doubly regenerative cylindrical grinding process[J]. Journal of Sound and Vibration, 2007, 301(3-5):950-962. [10] 迟玉伦, 李郝林. 切入式外圆磨削接触刚度与固有频率研究[J]. 中国机械工程, 2016, 27(10):1294-1298, 1326. CHI Yulun, LI Haolin. Study on contact stiffness and natural frequency in cylindrical plunge grinding[J]. China Mechanical Engineering, 2016, 27(10):1294-1298, 1326. [11] YAN Y, XU J, WIERCIGROCH M. Regenerative and frictional chatter in plunge grinding[J]. Nonlinear Dynamics, 2016, 86(1):283-307. [12] YAN Y, XU J, WIERCIGROCH M. Regenerative chatter in self-interrupted plunge grinding[J]. Meccanica, 2016, 51(12):3185-3202. [13] LIU T, DENG Z, LV L, et al. Theoretical and experimental study of temperature field in noncircular high-speed grinding[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107:3581-3592. [14] LIU T, DENG Z, LV L, et al. Experimental analysis of process parameter effects on vibrations in the high-speed grinding of a camshaft[J]. Journal of Mechanical Engineering, 2020, 66(3):175-183. [15] CHA K C, WANG N, LIAO J Y. Stability analysis for the crankshaft grinding machine subjected to a variable-position worktable[J]. The International Journal of Advanced Manufacturing Technology, 2012, 67(1-4):501-516. [16] JIANG Z, HE Y. Research on stability prediction of the crankshaft CNC tangential point tracing grinding[J]. Mathematical Problems in Engineering, 2015, 2015:1-10. [17] 杨寿智. 凸轮轴高速磨削加工质量影响因素分析及关键技术研究[D]. 长沙:湖南大学, 2016. YANG Shouzhi. The research on the influencing factors and the key technology for the machining quality of high speed camshaft grinding[D]. Changsha:Hunan University, 2016. [18] 张氢, 陈文韬, 陈淼, 等. 数控凸轮轴磨床颤振稳定性研究[J]. 湖南大学学报, 2020, 47(2):45-52. ZHANG Qing, CHEN Wentao, CHEN Miao, et al. Study on cutting chatter stability of a computerized numerical control camshaft grinder[J]. Journal of Hunan University, 2020, 47(2):45-52. [19] THOMPSON R A. On the doubly regenerative stability of a grinder:The effect of contact stiffness and wave filtering[J]. Journal of Manufacturing Science & Engineering, 1992, 114(1):53-60. [20] GUO M, WEI Z, WANG M, et al. Modal parameter identification of general cutter based on milling stability theory[J]. Journal of Intelligent Manufacturing, 2021, 32(1):221-235. [21] EYNIAN M. In-process identification of modal parameters using dimensionless relationships in milling chatter[J]. International Journal of Machine Tools and Manufacture, 2019, 143:49-62. [22] RAMOS J C, VINOLAS J, NIETO F J. A simplified methodology to determine the cutting stiffness and the contact stiffness in the plunge grinding process[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1):33-49. [23] MARSH E R, MOERLEIN A W, DEAKYNE T R S, et al. In-process measurement of form error and force in cylindrical-plunge grinding[J]. Precision Engineering, 2008, 32(4):348-352. [24] MOERLEIN A W, MARSH E R, DEAKYNE T R S, et al. In-process force measurement for diameter control in precision cylindrical grinding[J]. International Journal of Advanced Manufacturing Technology, 2009, 42(1-2):93-101. [25] GARITAONANDIA I, FERNANDES M H, ALBIZURI J. Dynamic model of a centerless grinding machine based on an updated FE model[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7-8):832-840. [26] 代月帮, 魏兆成, 李宏坤, 等. 基于接触区域的球头铣刀颤振稳定域预报方法研究[J]. 机械工程学报, 2019, 55(1):52-61. DAI Yuebang, WEI Zhaocheng, LI Hongkun, et al. Research on prediction method of stability lobe diagram for ball-end mill based on engagement[J]. Journal of Mechanical Engineering, 2019, 55(1):52-61. [27] HAYASAKA T, JUNG H, AZUMA K, et al. Consolidated chatter stability prediction model considering material removing and ploughing processes[J]. Precision Engineering, 2019, 59:120-133. [28] LIU Y, WANG X, LIN J, et al. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic[J]. Mechanical Systems and Signal Processing, 2020, 142:106672. [29] DAI C W, DING W F, ZHU Y J, et al. Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel[J]. Precision Engineering, 2018, 52:192-200. [30] BADGER J, MURPHY S, O'DONNELL G. The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter[J]. International Journal of Machine Tools and Manufacture, 2011, 51(10-11):766-774. |