[1] LIU H F, NIE Y M, CHEN K, et al. Carbon brush wear of radar tachometer identification technology based on eigen value analysis in time domain[J]. Applied Mechanics and Materials, 2014, 602-605:1883-1886. [2] CHEN G X, YANG H J, ZHANG W H, et al. Effect of the strip inclination angle on the friction and wear behavior of contact strip against contact wire with electric current[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2013, 227(12):1406-1417. [3] WEI W F, JIE W, GAO G Q, et al. Study on pantograph arcing in a laboratory simulation system by high-speed photography[J]. IEEE Transactions on Plasma Science, 2016, 44(10):2438-2445. [4] HUANG S, FENG Y, LIU H, et al. Electrical sliding friction and wear properties of Cu-MoS2-Graphite-WS2 nanotubes composites in air and vacuum conditions[J]. Materials Science & Engineering A, 2013, 560:685-692. [5] HUANG Z Y, ZHAI H X, LI M Q, et al. Friction behaviors and effects on current-carrying wear characteristics of bulk Ti3AlC2[J]. Tribology Transactions, 2014, 57(2):300-307. [6] 徐屹, 凤仪, 王松林, 等. 碳纳米管-银-石墨复合材料的电磨损性能[J]. 机械工程学报, 2006, 25(12):328-332. XU Yi, FENG Yi, WANG Songlin, et al. Electrcal friction and wear properties of CNT-Ag-G composite[J]. Journal of Mechanical Engineering, 2006, 25(12):328-332. [7] WILLIAMR J J, JANSEN M J. Space tribology[M]. Ohio:Glenn Research Center, 2000. [8] SUN Y X, SONG C F, LIU Z L, et al. Effect of relative humidity on the tribological/conductive properties of Cu/Cu rolling contact pairs[J]. Wear, 2019, 436:203023. [9] SUN Y X, SONG C F, LIU Z L, et al. Tribological and conductive behavior of Cu/Cu rolling current-carrying pairs in a water environment[J]. Tribology International, 2020, 143:106055. [10] JAYASHREE P, FEDERICI M, BRESCIANI L, et al. Effect of steel counterface on the dry sliding behaviour of a Cu-Based metal matrix composite[J]. Tribology Letters, 2018, 66(4):123. [11] ZHANG Y Z, YANG Z H, SONG K X, et al. Triboelectric behaviors of materials under high speeds and large currents[J]. Friction, 2013, 1(3):259-270. [12] XIE X L, ZHANG L, XIAO J K. Sliding electrical contact behavior of AuAgCu brush on Au plating[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9):3029-3036. [13] 丁涛, 王鑫, 陈光雄, 等. 120~170km/h条件下碳滑板/铜接触线摩擦磨损性能试验研究[J]. 机械工程学报, 2010, 46(16):36-40. DING Tao, WANG Xin, CHEN Guangxiong, et al. Experimental study on friction and wear behavior of carbon strip/copper contact wire at speeds of 120~170 km/h[J] Journal of Mechanical Engineering, 2010, 46(16):36-40. [14] 戴振东, 张永振, 黄肖飞, 等. 一种滚动载流摩擦磨损试验机:中国, CN107014708B[P]. 2017-03-22. DAI Zhendong, ZHANG Yongzhen, HUANG Xiaofei, et al. Rolling current-carrying friction abrasion tester:China, CN107014708B[P]. 2017-03-22. [15] JOHNSON K L. Contact mechanics[M]. London:Cambridge University Press, 1987. [16] ONO K J, MIFUNE T, MESHII M. Yield stress increase in electron irradiated copper[J]. Philosophical Magazine, 1968, 17:235-240. [17] 张永振, 宋克兴, 杜三明. 载流摩擦学[M]. 北京:科学出版社, 2016. ZHANG Yongzhen, SONG Kexing, DU Sanming. Current-carrying tribology[M]. Beijing:Science Press, 2016. [18] 王婧, 张文轩. 高速铁路弓网燃弧率评价标准探讨[J]. 铁道技术监督, 2017, 45(1):7-9, 16. WANG Jing, ZHANG Wenxuan. Discussion on evaluation standard of pantograph catenary arcing rate of high speed railway[J]. Railway Quality Control, 2017, 45(1):7-9, 16. [19] JAYASHREE P, TURANI S, STRAFFELINI G. Effect of testing conditions on the dry sliding behavior of a Cu-Based refractory composite material[J]. Tribology International, 2019, 140:105850. [20] WEI Q, GAO W, YANG Q, et al. Material removal and tribological behaviors of fused silica scratched by rockwell lndenters with different tip radii[J]. Journal of Non-crystalline Solids, 2019, 514:90-97. [21] ZHAI H X, HUANG Z Y. Instabilities of sliding friction governed by asperity interference mechanisms[J]. Wear, 2004, 257(3):414-422. [22] HUANG S Y, FENG Y, LIU H J, et al. Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2 nanotubes composites in air and vacuum conditions[J]. Materials Science & Engineering A, 2013, 560:685-692. [23] KUBOTA Y, NAGASAKA S, MIYAUCHI T, et al. Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current[J]. Wear, 2013, 302(1-2):1492-1498. [24] ZHAO H, FENG Y, ZHOU Z, et al. Effect of electrical current density, apparent contact pressure, and sliding velocity on the electrical sliding wear behavior of Cu-Ti3AlC2 composites[J]. Wear, 2020, 444-445:203156. [25] DENG C, YIN J, ZHANG H, et al. Dynamic variation of arc discharge and its effect on corrosion direction under current-carrying sliding[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2018, 233(3):380-392. [26] DENG T, CHEN G X, BI J, et al. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenarysystems[J]. Wear, 2011, 271(9/10):1629-1636. [27] LANCASTER J F. The physics of welding[J]. Physics in Technology, 1984, 15(2):73-79. [28] DENG T, CHEN G X, LI Y M, et al. Arc erosive characteristics of a carbon strip sliding against a copper contact wire in a high-speed electrified railway[J]. Tribology International, 2014, 79:8-15. [29] HE Q, YANG H, CHEN L S, et al. Arc erosion and morphological characters of Ag/LSCO(12) contacts by different methods[J]. Advanced Materials Research, 2013, 815:80-85. [30] 宋晨飞, 孙毓明, 孙逸翔, 等. 纯铜滚动载流摩擦副在不同载荷和电压作用下的失效研究[J]. 机械工程学报, 2019, 55(9):63-70. SONG Chenfei, SUN Yuming, SUN Yixiang, et al. Failure of Cu rolling triboelectric pairs under various load and voltage[J]. Journal of Mechanical Engineering, 2019, 55(9):63-70. |