[1] ZHANG Jie, DONG Qiangbing. Lubrication performance analysis of crankshaft bush in compressor[J]. Engineering Failure Analysis, 2018, 90:277-289. [2] 聂涛, 刘振明, 刘楠, 等. 内燃机径向滑动轴承润滑特性及影响因素研究[J]. 计算机仿真, 2019, 36(1):270-274. NIE Tao, LIU Zhenming, LIU Nan, et al. Research on the lubrication characteristics and influencing factors of the journal bearing in internal combustion engine[J]. Computer Integrated Manufacturing Systems, 2019, 36(1):270-274. [3] 毕凤荣, 刘博, 刘春朝, 等. 基于热弹流模型的柴油机连杆小头轴承润滑研究[J]. 内燃机工程, 2018, 39(4):15-22. BI Fengrong, LIU Bo, LIU Chunchao, et al. Research on diesel engine connecting rod small end bearing lubrication based on thermal elastic hydrodynamic model[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(4):15-22. [4] ILMAN M N, BARIZY R A. Failure analysis and fatigue performance evaluation of a failed connecting rod of reciprocating air compressor[J]. Engineering Failure Analysis, 2015, 56:142-149. [5] STROZZI A, BALDINI A, GIACOPINI M, et al. A repertoire of failures in connecting rods for internal combustion engines, and indications on traditional and advanced design methods[J]. Engineering Failure Analysis, 2016, 60:20-39. [6] SINGH N, AWASTHI R K, SINGH D, et al. Modeling and simulation of bearing clearance effects on journal center motion trajectories[J]. Materials Today:Proceedings, 2018, 5(9):17585-17596. [7] PROFITO F J, ZACHARIADIS D C, DINI D. Partitioned fluid-structure interaction techniques applied to the mixed-elastohydrodynamic solution of dynamically loaded connecting-rod big-end bearings[J]. Tribology International, 2019, 140:105767. [8] LEE K H, KIM J W, HUH Y J, et al. Optimum design of dynamically-loaded journal bearing with R600a refrigerant application[C]//International Compressor Engineering Conference, 1998:1232. [9] GRANDO F P, PRIEST M, PRATA A T. Lubrication in refrigeration systems:Numerical model for piston dynamics considering oil-refrigerant interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2006, 220(3):245-258. [10] 史正良, 郭小青, 胡余生, 等. 冷冻机油与制冷剂的溶解特性研究[J]. 制冷与空调, 2017(9):30-33. SHI Zhengliang, GUO Xiaoqing, HU Yusheng, et al. Research on miscibility characteristics of refrigeration oil and refrigerant[J]. Refrigeration and Air-Conditioning, 2017(9):30-33. [11] WANG Chuang, XING Ziwen, HOU Feng, et al. Research on axis orbit of the journal bearing lubricated with oil and refrigerant mixtures in a twin-screw refrigeration compressor[J]. International Journal of Refrigeration, 2018, 90:1-11. [12] ZHELEZNY V P, SCRIPOV V P. Determination of the pseudocritical parameters for refrigerant/oil solutions[J]. Fluid Phase Equilibria, 2003, 212(1-2):285-302. [13] ZHELEZNY V P, PROCENKO D A, ANCHERBAK S N. An experimental investigation and modelling of the thermodynamic properties of isobutane-compressor oil solutions:Some aspects of experimental methodology[J]. International Journal of Refrigeration, 2007, 30(3):433-445. [14] ZHELEZNY V P, SECHENYH V V, SEMENYUK Y V, et al. An experimental investigation and modelling of the viscosity refrigerant/oil solutions[J]. International Journal of Refrigeration, 2009, 32(6):1389-1395. [15] 吴建华, 雷源, 王刚, 等. 往复式冰箱压缩机曲轴动态特性与轴承润滑计算分析[J]. 西安交通大学学报, 2015, 49(2):55-61. WU Jianhua, LEI Yuan, WANG Gang, et al. Numerical analysis for the crankshaft's dynamic behavior and bearing lubrication of reciprocating refrigerator compressor[J]. Journal of Xi'an Jiaotong University, 2015, 49(2):55-61. [16] 郎骥, 杨建刚, 曹浩, 等. 滑动轴承热效应分析及流场等效温度的合理确定[J]. 润滑与密封, 2012, 37(10):70-73. LANG Ji, YANG Jiangang, CAO Hao, et al.Thermal effect analysis and fluid field average temperature reasonable determination of journal bearing[J]. Lubrication Engineering, 2012, 37(10):70-73. [17] PONT A, LOPEZ J, RIGOLA J, et al. Numerical dynamic analysis of reciprocating compressor mechanism:Parametric studies for optimization purposes[J]. Tribology International, 2017, 105:1-14. [18] 胡启龙, 何文强, 管文生, 等. 滑动轴承内轴颈涡动引发的热效应分析[J]. 热能动力工程, 2020, 35(9):22-28. HU Qilong, HE Wenqiang, GUAN Wensheng, et al. Analysis on thermal effect caused by journal whirl in sliding bearing[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(9):22-28. |