Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (9): 1-11.doi: 10.3901/JME.2021.09.001
XING Zhiguang1,2, LIN Jun1,2, ZHAO Jianwen1,2
Received:
2020-05-22
Revised:
2020-11-18
Online:
2021-05-05
Published:
2021-06-15
CLC Number:
XING Zhiguang, LIN Jun, ZHAO Jianwen. Overview of the Artificial Muscle Actuators[J]. Journal of Mechanical Engineering, 2021, 57(9): 1-11.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] RICOTTI L,TRIMMER B,FEINBERG A W,et al. Biohybrid actuators for robotics:A review of devices actuated by living cells[J]. Science Robotics,2017,2(12):eaaq0495. [2] HUNTER I W,LAFONTAINE S. A comparison of muscle with artificial actuators[C]//Technical Digest IEEE Solid-State Sensor and Actuator Workshop. IEEE,1992:178-185. [3] HUGHES D,HECKMAN C,CORRELL N. Materials that make robots smart[J]. The International Journal of Robotics Research,2019,38(12-13):1338-1351. [4] HINES L,PETERSEN K,LUM G Z,et al. Soft actuators for small‐scale robotics[J]. Advanced Materials,2017,29(13):1603483. [5] HILLEBRANDT-ANDRADE C G. Minimizing caribbean tsunami risk[J]. Science,2013,341(6149):966-968. [6] AKHRAS G. Smart materials and smart systems for the future[J]. Canadian Military Journal,2000,1(3):25-31. [7] MIRVAKILI S M,HUNTER I W. Artificial muscles:Mechanisms,applications,and challenges[J]. Advanced Materials,2018,30(6):1704407. [8] ZHANG J,SHENG J,O’NEILL C T,et al. Robotic artificial muscles:Current progress and future perspectives[J]. IEEE Transactions on Robotics,2019,35(3):761-781. [9] MIRFAKHRAI T,MADDEN J DW,BAUGHMAN R H. Polymer artificial muscles[J]. Materials Today,2007,10(4):30-38. [10] TRIVEDI D,RAHN C D,KIER W M,et al. Soft robotics:Biological inspiration,state of the art,and future research[J]. Applied Bionics and Biomechanics,2008,5(3):99-117. [11] LASCHI C,MAZZOLAI B,CIANCHETTI M. Soft robotics:Technologies and systems pushing the boundaries of robot abilities[J]. Sci. Robot,2016,1(1):eaah3690. [12] 张忠强,邹娇,丁建宁,等. 软体机器人驱动研究现状[J]. 机器人,2018,40(5):74-85. ZHANG Zhongqiang,ZOU Jiao,DING Jianning,et al. Research status of the soft robot driving[J]. Robot,2018,40(5):648-659. [13] MOUTHUY P A,CARR A. Growing tissue grafts on humanoid robots:A future strategy in regenerative medicine?[J]. Science Robotics,2017,2(4):eaam5666. [14] MADDEN JDW,VANDESTEEG N A,ANQUETIL P A,et al. Artificial muscle technology:Physical principles and naval prospects[J]. IEEE Journal of Oceanic Engineering,2004,29(3):706-728. [15] CHRISTENSEN H I,OKAMURA A,MATARIC M,et al. Next generation robotics[J]. arXiv preprint arXiv,2016:1606.09205. [16] WANG T. Soft robotics:Structure,actuation,sensing and control[J]. Journal of Mechanical Engineering,2017,53(13):1. [17] OHTA P,VALLE L,KING J,et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves[J]. Soft Robotics,2018,5(2):204-215. [18] HAN K,KIM N H,SHIN D. A novel soft pneumatic artificial muscle with high-contraction ratio[J]. Soft Robotics,2018,5(5):554-566. [19] CHOU C P,HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation,1996,12(1):90-102. [20] CONNOLLY F,WALSH C J,BERTOLDI K. Automatic design of fiber-reinforced soft actuators for trajectory matching[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(1):51-56. [21] GU G,WANG D,GE L,et al. Analytical modeling and design of generalized pneu-net soft actuators with three-dimensional deformations[J]. Soft Robotics,2020(8):19. [22] KIM W,BYUN J,KIM J K,et al. Bioinspired dual-morphing stretchable origami[J]. Science Robotics,2019,4(36):eaay3493. [23] LEE J G,RODRIGUE H. Origami-based vacuum pneumatic artificial muscles with large contraction ratios[J]. Soft Robotics,2019,6(1):109-117. [24] MOSADEGH B,POLYGERINOS P,KEPLINGER C,et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials,2014,24(15):2163-2170. [25] CHANG B,CHEW A,NAGHSHINEH N,et al. A spatial bending fluidic actuator:Fabrication and quasi-static characteristics[J]. Smart Materials and Structures,2012,21(4):45008. [26] BionicSoftArm | Festo[OL]. https://www.festo.com/group/zh/cms/13527.htm. [27] ZHANG Z,DEMIR K G,GU G X. Developments in 4D-printing:A review on current smart materials,technologies,and applications[J]. International Journal of Smart and Nano Materials,2019,10(3):205-224. [28] JARDINE J G,OTA T,SOK D,et al. A 3D-printed,functionally graded soft robot powered by combustion[J]. Science,2015,349(6244):156-161. [29] MIRIYEV A,STACK K,LIPSON H. Soft material for soft actuators[J]. Nature Communications,2017,8(1):1-8. [30] Yang D,VERMA M S,SO J H,et al. Buckling pneumatic linear actuators inspired by muscle[J]. Advanced Materials Technologies,2016,1(3):1600055. [31] TRUBY R L,WEHNER M,GROSSKOPF A K,et al. Soft somatosensitive actuators via embedded 3D printing[J]. Advanced Materials,2018,30(15):e1706383. [32] CACUCCIOLO V,SHINTAKE J,KUWAJIMA Y,et al. Stretchable pumps for soft machines[J]. Nature,2019,572(7770):516-519. [33] ROBERTSON M A,SADEGHI H,FLOREZ J M,et al. Soft pneumatic actuator fascicles for high force and reliability[J]. Soft Robotics,2017,4(1):23-32. [34] 王琦珑,王伟,郝大贤,等. 编织型气动人工肌肉迟滞现象建模与应用[J]. 机械工程学报,2019,55(21):73-80. WANG Qilong,WANG Wei,HAO Daxian,et al. Hysteresis modeling and application of mckibben pneumatic artificial muscles[J]. Journal of Mechanical Engineering,2019,55(21):73-80. [35] HAO Y,GONG Z,XIE Z,et al. Universal soft pneumatic robotic gripper with variable effective length[C]//Staff,I. 201635th Chinese Control Conference (CCC). Piscataway:IEEE,2016:6109-6114. [36] ASBECK A T,SCHMIDT K,WALSH C J. Soft exosuit for hip assistance[J]. Robotics and Autonomous Systems,2015,73:102-110. [37] ASBECK A T,ROSSI S MM de,HOLT K G,et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research,2015,34(6):744-762. [38] LASCHI C,CIANCHETTI M,MAZZOLAI B,et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics,2012,26(7):709-727. [39] CHEN Y. Design,fabrication and performance of a flexible minimally invasive surgery manipulator integrated with soft actuation and variable stiffness[J]. Journal of Mechanical Engineering,2018,54(17):53. [40] CHANG B C-M,BERRING J,VENKATARAM M,et al. Bending fluidic actuator for smart structures[J]. Smart Materials and Structures,2011,20(3):35012. [41] ZHU M,DO T N,HAWKES E,et al. Fluidic fabric muscle sheets for wearable and soft robotics[J]. Soft Robotics,2020,7(2):179-197. [42] ZHANG J,SIMEONOV A,YIP M C. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles[J]. Journal of Micromechanics and Microengineering,2018,27(3):35002. [43] WEHNER M,TRUBY R L,FITZGERALD D J,et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature,2016,536(7617):451-455. [44] RANZANI T,RUSSO S,BARTLETT N W,et al. Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials,2018,30(38):e1802739. [45] RODRIGUE H,WANG W,HAN M-W,et al. An overview of shape memory alloy-coupled actuators and robots[J]. Soft Robotics,2017,4(1):3-15. [46] HE Q,WANG Z,WANG Y,et al. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation[J]. Science Advances,2019,5(10):eaax5746. [47] SIMONE F,RIZZELLO G,SEELECKE S. Metal muscles and nerves—a self-sensing SMA-actuated hand concept[J]. Smart Materials and Structures,2017,26(9):95007. [48] MERTMANN M,VERGANI G. Design and application of shape memory actuators[J]. The European Physical Journal Special Topics,2008,158(1):221-230. [49] ALCAIDE J O,PEARSON L,RENTSCHLER M E. Design,modeling and control of a SMA-actuated biomimetic robot with novel functional skin[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2017:4338-4345. [50] PANKSEPP J. Playing nature’s game with artificial muscles[J]. Science,2005,308(5718):62-63. [51] FOROUGHI J,SPINKS G. Carbon nanotube and graphene fiber artificial muscles[J]. Nanoscale Advances,2019,1(12):4592-4614. [52] GAO P,LI J,SHI Q. A hollow polyethylene fiber-based artificial muscle[J]. Advanced Fiber Materials,2019,1(3-4):214-221. [53] MU J,DE ANDRADE M J,FANG S,et al. Sheath-run artificial muscles[J]. Science,2019,365(6449):150-155. [54] KANIK M,ORGUC S,VARNAVIDES G,et al. Strain-programmable fiber-based artificial muscle[J]. Science,2019,365,145-150. [55] HAINES C S,LIMA M D,LI N,et al. Artificial muscles from fishing line and sewing thread[J]. Science,2014,343(6173):868-872. [56] MIRVAKILI S M,PAZUKHA A,SIKKEMA W,et al. Niobium nanowire yarns and their application as artificial muscles[J]. Advanced Functional Materials,2013,23(35):4311-4316. [57] YUAN J,NERI W,ZAKRI C,et al. Shape memory nanocomposite fibers for untethered high-energy microengines[J]. Science,2019,365(6449):155-158. [58] SHIN B,HA J,LEE M,et al. Hygrobot:A self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3(14):eaar2629. [59] WHITE T J,BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nature Materials,2015,14(11):1087-1098. [60] WU L,JUNG DE ANDRADE M,SAHARAN L K,et al. Compact and low-cost humanoid hand powered by nylon artificial muscles[J]. Bioinspiration & Biomimetics,2017,12(2):26004. [61] BOLZMACHER C,BIGGS J,SRINIVASAN M. Smart structures and materials 2006:Electroactive polymer actuators and devices (EAPAD)[J]. Proc. SPIE,2006,6168:27-38. [62] PELRINE,KORNBLUH,PEI,et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science,2000,287(5454):836-839. [63] O’HALLORAN A,O’MALLEY F,MCHUGH P. A review on dielectric elastomer actuators,technology,applications,and challenges[J]. Journal of Applied Physics,2008,104(7):71101. [64] ANDERSON I A,GISBY T A,MCKAY T G,et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines[J]. Journal of Applied Physics,2012,112(4):41101. [65] 李铁风,李国瑞,梁艺鸣,等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报,2016,48(4):756-766. LI Tiefeng,LI Guorui,LIANG Yiming,et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechani,2016,48(4):756-766. [66] GU G,ZOU J,ZHAO R,et al. Soft wall-climbing robots[J]. Science Robotics,2018,3(25):eaat2874. [67] LI T,LI G,LIANG Y,et al. Fast-moving soft electronic fish[J]. Science Advances,2017,3(4):e1602045. [68] RIVAZ S D de,GOLDBERG B,DOSHI N,et al. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Science Robotics,2018,3(25):eaau3038. [69] CHEN Y,ZHAO H,MAO J,et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature,2019,575(7782):324-329. [70] ZHAO J,ZHANG J,MCCOUL D,et al. Soft and fast hopping-running robot with speed of six times its body length per second[J]. Soft Robotics,2019,6(6):713-721. [71] XING Z,ZHANG J,MCCOUL D,et al. A Super-lightweight and soft manipulator driven by dielectric elastomers[J]. Soft Robotics,2020,7(4):512-520. [72] JI X,LIU X,CACUCCIOLO V,et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics,2019,4(37):eaaz6451. [73] DUDUTA M,HAJIESMAILI E,ZHAO H,et al. Realizing the potential of dielectric elastomer artificial muscles[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(7):2476-2481. [74] LI C H,WANG C,KEPLINGER C,et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry,2016,8(6):618-624. [75] PARK T,KIM K,OH S R,et al. Electrohydraulic actuator for a soft gripper[J]. Soft Robotics,2019,7(1):68-75. [76] Kellaris N,VENKATA V G,SMITH G M,et al. Peano-HASEL actuators:Muscle-mimetic,electrohydraulic transducers that linearly contract on activation[J]. Science Robotics,2018,3(14):eaar3276. [77] TAGHAVI M,HELPS T,ROSSITER J. Electro-ribbon actuators and electro-origami robots[J]. Science Robotics,2018,3(25):eaau9795. [78] SHAHINPOOR M,BAR-COHEN Y,SIMPSON J O,et al. Ionic polymer-metal composites (IPMCs) as biomimetic sensors,actuators and artificial muscles-a review[J]. Smart Materials and Structures,1998,7(6):R15. [79] KHAWWAF J,ZHENG J,CHAI R,et al. Adaptive microtracking control for an underwater IPMC actuator using new hyperplane-based sliding mode[J]. IEEE/ASME Transactions on Mechatronics,2019,24(5):2108-2117. [80] APPIAH C,ARNDT C,SIEMSEN K,et al. Living materials herald a new era in soft robotics[J]. Advanced Materials,2019,31(36):e1807747. [81] HERR H,DENNIS R G. A swimming robot actuated by living muscle tissue[J]. Journal of Neuroengineering and Rehabilitation,2004,1(1):6. [82] RIVERA-TARAZONA L K,et al. Shape-morphing living composites[J]. Science Advances,2020,6(3):eaax8582. [83] KRIEGMAN S,BLACKISTON D,LEVIN M,et al. A scalable pipeline for designing reconfigurable organisms[J]. Proceedings of the National Academy of Sciences,2020,117(4):1853-1859. [84] NAWROTH J C,LEE H,FEINBERG A W,et al. A tissue-engineered jellyfish with biomimetic propulsion[J]. Nature Biotechnology,2012,30(8):792-797. [85] MORIMOTO Y,ONOE H,TAKEUCHI S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues[J]. Science Robotics,2018,3(18):eaat4440. [86] SAKAR M S,NEAL D,BOUDOU T,et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators[J]. Lab on a Chip,2012,12(23):4976-4985. [87] RAGAUSKAS A J,WILLIAMS C K,DAVISON B H,et al. The path forward for biofuels and biomaterials[J]. Science,2006,311(5760):484-489. [88] SUNDARAM S,SKOURAS M,KIM D S,et al. Topology optimization and 3D printing of multimaterial magnetic actuators and displays[J]. Science Advances,2019,5(7):eaaw1160. [89] SHEIKO S S,EVERHART M H,DOBRYNIN A V,et al. Encoding tissue mechanics in silicone[J]. Science Robotics,2018,3(18):eaat7175. [90] SKYLAR-SCOTT M A,MUELLER J,VISSER C W,et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature,2019,575(7782):330-335. [91] Kumar A. Methods and materials for smart manufacturing:Additive manufacturing,internet of things,flexible sensors and soft robotics[J]. Manufacturing Letters,2018,15:122-125. |
[1] | WANG Xiangyu, REN Fan, LIU Chong, XU Siang, WANG Longxin, FANG Yongchun, YU Ningbo, HAN Jianda. Advancement of Flexible Endoscopic Robots Technologies for NOTES [J]. Journal of Mechanical Engineering, 2024, 60(17): 40-62. |
[2] | ZHENG Siyuan, TIAN Junjie, WANG Lipeng, LIU Shichuang, WANG Hongbo, NIU Jianye. Design and Analysis of Compact Rigid-flexible Coupled Waist Rehabilitation Robot [J]. Journal of Mechanical Engineering, 2024, 60(17): 156-166. |
[3] | DU Hongwang, XU Xiaoya, SHAO Renbo, XIONG Wei, WANG Haitao. Modeling, Analysis and Verification of Transient Dynamics of Pneumatic Bending Artificial Muscle [J]. Journal of Mechanical Engineering, 2023, 59(21): 199-208. |
[4] | DU Hongwang, XU Xiaoya, SHAO Renbo, XIONG Wei, WANG Haitao. High Grasp Ability Artificial Muscle Flexible Robot Design and Verification [J]. Journal of Mechanical Engineering, 2023, 59(17): 89-96. |
[5] | MA Kaiwei, GAO Shuang, JIANG Zhenjiang, FAN Baojie, XU Fengyu. Research on Hand Rehabilitation Device Based on 3D Soft Actuator [J]. Journal of Mechanical Engineering, 2022, 58(23): 88-97. |
[6] | LI Haili, YAO Jiantao, ZHANG Taiming, ZHOU Pan, LIU Chunye, CHEN Xinbo. Design and Analysis of a High-load Pneumatic Soft Gripper [J]. Journal of Mechanical Engineering, 2020, 56(3): 56-63. |
[7] | XIE Rongzhen, HUANG Dongyu, SU Manjia, GUAN Yisheng, ZHU Haifei. Modeling and Analysis of 3D Pneumatic Soft Actuator on Bending [J]. Journal of Mechanical Engineering, 2020, 56(15): 157-169. |
[8] | LI Yuan, ZI Bin, SUN Zhi. Kinematic Analysis of the Waist Rehabilitation Robot Based on Pseudo-rigid-body Model [J]. Journal of Mechanical Engineering, 2019, 55(23): 67-74. |
[9] | WANG Qilong, WANG Wei, HAO Daxian, YUN Chao. Hysteresis Modeling and Application of Mckibben Pneumatic Artificial Muscles [J]. Journal of Mechanical Engineering, 2019, 55(21): 73-80. |
[10] | GUO Zhonghua, LI Xiaoning, LIN Haopeng. Soft Adaptive Gripper with Active Enveloping Arms and Vacuum Jamming Technology [J]. Journal of Mechanical Engineering, 2019, 55(12): 215-221. |
[11] | YANG Yang, XIAO Xiaoxiao, NAN Zhuojiang, LIU Na, LI Xiaomao, PENG Yan. Design and Kinematic Characteristics of Rigid-flexible Coupling Bionic Finger [J]. Journal of Mechanical Engineering, 2019, 55(11): 105-113. |
[12] | XIE Zhexin, GONG Zheyuan, WANG Tianmiao, WEN Li. Simulation and Experiments of a Controllable Soft Spatial Fluidic Elastomer Manipulator [J]. Journal of Mechanical Engineering, 2018, 54(21): 11-18. |
[13] | YAO Jiantao, LI Haili, CAO Kaibin, CHEN Xinbo, ZHOU Pan, ZHAO Yongsheng. Design and Analysis of Flexible Wearable Wrist Power Glove [J]. Journal of Mechanical Engineering, 2018, 54(19): 1-9. |
[14] | CHEN Yuyu, LIU Lei, LI Bo, WEI Chao, WANG Shuxin, LI Dichen. Design, Fabrication and Performance of a Flexible Minimally Invasive Surgery Manipulator Integrated with Soft Actuation and Variable Stiffness [J]. Journal of Mechanical Engineering, 2018, 54(17): 53-61. |
[15] | GUO Chuangqiang, WU Chunya, LIU Hong. Application Progress of Ionic Polymer-metal Composites Actuator in Robots [J]. Journal of Mechanical Engineering, 2017, 53(9): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||