Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (8): 115-132.doi: 10.3901/JME.2021.08.115
Previous Articles Next Articles
QIN Renyao, ZHANG Guodong, LI Neng, LIU Wei, HUANG Shuai, XIONG Huaping
Received:
2020-08-16
Revised:
2021-02-01
Online:
2021-04-20
Published:
2021-06-15
CLC Number:
QIN Renyao, ZHANG Guodong, LI Neng, LIU Wei, HUANG Shuai, XIONG Huaping. Research Progress on Additive Manufacturing of TiAl-based Alloys[J]. Journal of Mechanical Engineering, 2021, 57(8): 115-132.
[1] 张永刚,韩雅芳,陈国良,等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2003. ZHANG Yonggang,HAN Yafang,CHEN Guoliang,et al. Structural intermetallics[M]. Beijing:National Defense Industry Press,2003. [2] DIMIDUK D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science &; Engineering:A,1999,263:281-288. [3] LORIA E A. Quo vadis gamma titanium aluminide[J]. Intermetallics,2001,9:997-1001. [4] NOCHOVNAYA N A,PANIN P V,KOCHETKOV A S,et al. Modern refractory alloys based on titanium gamma-aluminide:Prospects of development and application[J]. Metal Science and Heat Treatment,2014,56:364-367. [5] YE X C,XIAO K Q,CAO R X,et al. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting[J]. Vacuum,2019,163:186-193. [6] HU D,WU X,LORETTO M H. Advances in optimisation of mechanical properties in cast TiAl alloys[J]. Intermetallics,2005,13:914-919. [7] 肖代红,黄伯云. 细晶TiAl基铸造合金的制造及其凝固特征[J]. 稀有金属材料与工程,2009,38(6):982-986. XIAO Daihong,HUANG Boyun. Synthesis and solidification characterization of TiAl based alloy with fine grain structure[J]. Rare Metal Materials and Engineering,2009,38(6):982-986. [8] LI J B,LIU Y,LIU B,et al. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy[J]. Materials Characterization,2014,95:148-156. [9] YANG F,KONG F,CHEN Y Y,et al. Effect of heat treatment on microstructure and properties of as-forged TiAl alloy with β phase[J]. Rare Metal Materials and Engineering,2011,40:1505-1509. [10] MAZIASZ P J,LIU C T. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys[J]. Metallurgical and Materials Transactions:A,1998,29:105-117. [11] KOTHARI K,RADHAKRISHNAN R,WERELEY N M,et al. Microstructure and mechanical properties of consolidated gamma titanium aluminides[J]. Powder Metallurgy,2007,50:21-27. [12] 孔凡涛,陈玉勇,田竞,等. 提高TiAl基合金室温塑性的方法[J]. 稀有金属材料与工程,2003,32(2):81-86. KONG Fantao,CHEN Yuyong,TIAN Jing,et al. Methods of improving room temperature ductility of TiAl based alloys[J]. Rare Metal Materials and Engineering,2003,32(2):81-86. [13] 尚泳来,任海水,熊华平,等. γ-TiAl合金自身及其与高温合金的钎焊技术研究进展与趋势[J]. 焊接,2018(12):12-20. SHANG Yonglai,REN Haishui,XIONG Huaping,et al. Research progress and trend on brazing technology of γ-TiAl alloys and with superalloy[J]. Welding,2018(12):12-20. [14] REN H S,XIONG H P,CHEN B,et al. Transient liquid phase diffusion bonding of Ti-24Al-15Nb-1Mo alloy to TiAl intermetallics[J]. Materials Science &; Engineering:A,2016,651:45-54. [15] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报,2013,49(6):129-135. LI Dichen,HE Jiankang,TIAN Xiaoyong,et al. Additive manufacturing integrated fabrication of macro/ microstructures[J]. Journal of Mechanical Engineering,2013,49(6):129-135. [16] 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报,2016,31(1):10-16. ZHANG Xiaowei. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power,2016,31(1):10-16. [17] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术,2013,433(13):66-71. GONG Shuili,SUO Hongbo,LI Huaixue. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology,2013,433(13):66-71. [18] LI N,HUANG S,ZHANG G D,et al. Progress in additive manufacturing on new materials[J]. Journal of Materials Science &; Technology,2019,35:242-269. [19] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151. [20] QIN R Y,ZHANG X J,GUO S Q,et al. Laser cladding of high Co-Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surface and Coatings Technology,2016,285:242-248. [21] LI N,XIONG Y,XIONG H P,et al. Microstructure,formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization,2019,148:43-51. [22] 刘占起,徐国建,马瑞鑫,等. 激光同轴送粉增材制造TiAl合金的性能[J]. 中国激光,2019,46(3):146-152. LIU Zhanqi,XU Guojian,MA Ruixin,et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding[J]. Chinese Journal of Lasers,2019,46(3):146-152. [23] PFLUMM R,FRIEDLE S,SCHUTZE M. Oxidation protection of γ-TiAl-based alloys:A review[J]. Intermetallics,2015,56:1-4. [24] MCELROY S,YANG D H,REDDY R. Laser processing of titanium aluminides[J]. Journal of Materials Engineering and Performance,2000,9:506-515. [25] CARCEL B,SERRANO A,ZAMBRANO J,et al. Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties[J]. Physics Procedia,2014,56:284-293. [26] CARRULLO J C Z,FALCON J C P,BORRAS V A. Influence of process parameters and initial microstructure on the oxidation resistance of Ti48Al2Cr2Nb coating obtained by laser metal deposition[J]. Surface and Coatings Technology,2019,358:114-124. [27] MALIUTINA I N,SIMOHAND H,PIOLET R,et al. Laser cladding of γ-TiAl intermetallic alloy on titanium alloy substrates[J]. Metallurgical and Materials Transactions:A,2016,47:378-387. [28] LIU Y,LIU W S,MA Y Z,et al. Microstructure and wear resistance of compositionally graded TiAl intermetallic coating on Ti6Al4V alloy fabricated by laser powder deposition[J]. Surface &; Coating Technology,2018,353:32-40. [29] SRIVASTAVA D,CHANG I T H,LORETTO M H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components[J]. Materials &; Design,2000,21:425-433. [30] SRIVASTAVA D. Microstructural characterization of the γ-TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique[J]. Bulletin of Materials Science,2002,25:619-633. [31] SRIVASTAVA D,CHANG I T H,LORETTO M H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples[J]. Intermetallics,2001,9:1003-1013. [32] BALLA V K,DAS M,MOHAMMAD A,et al. Additive manufacturing of γ-TiAl processing,microstructure,and properties[J]. Advanced Engineering Materials,2016,18:1208-1215. [33] ZHANG X D,BRICE C,MAHAFFEY D W,et al. Characterization of laser-deposited TiAl alloys[J]. Scripta Materialia,2001,44:2419-2424. [34] QU H P,WANG H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys[J]. Materials Science &; Engineering:A,2007,466:187-194. [35] ZHANG J S,WU Y,CHENG X,et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique[J]. Materials Letters,2019,243:62-65. [36] ZHANG X Y,LI C W,ZHENG M Y,et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition[J]. Additive Manufacturing,2020,32:101087. [37] ZHANG X Y,LI C W,ZHONG H Z,et al. Microstructure formation and tailoring of the intermetallic TiAl alloy produced by direct laser deposition[J]. Metallurgical and Materials Transactions:A,2020,51:82-87. [38] 尚纯,李长富,杨光,等. 后处理对激光沉积制造γ-TiAl合金组织与性能的影响[J]. 材料热处理学报,2017,38(10):29-34. SHANG Chun,LI Changfu,YANG Guang,et al. Effects of post treatment on microstructure and properties of γ-TiAl alloy fabricated by laser deposition manufacturing[J]. Transactions of Materials and Heat Treatment,2017,38(10):29-34. [39] QU H P,LI P,ZHANG S Q,et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys[J]. Materials &; Design,2010,31:2201-2210. [40] THOMAS M,MALOT T,AUBRY P. Laser metal deposition of the intermetallic TiAl alloy[J]. Metallurgical and Materials Transactions:A,2017,48:3143-3158. [41] QU H P,LI P,ZHANG S Q,et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials &; Design,2010,31(1):574-582. [42] YAN L,CHEN X,ZHANG Y,et al. Fabrication of functionally graded Ti and γ-TiAl by laser metal deposition[J]. JOM,2017,69(12):2756-2761. [43] LIU Z Q,MA R X,XU G J,et al. Laser additive manufacturing of bimetallic structure from Ti-6Al-4V to Ti-48Al-2Cr-2Nb via vanadium interlayer[J]. Materials Letters,2020,263:127210. [44] WU Y,CHENG X,ZHANG S Q,et al. Microstructure and phase evolution in γ-TiAl/Ti2AlNb dual alloy fabricated by direct metal deposition[J]. Intermetallics,2019,106:26-35. [45] 闫泰起,唐鹏钧,陈冰清,等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报,2020,56(8):37-45. YAN Taiqi,TANG Pengjun,CHEN Bingqing,et al. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering,2020,56(8):37-45. [46] LOEBER L,BIAMINO S,ACKELID U,et al. Comparison of selective laser and electron beam melted titaniu aluminides[C]//Conference Paper of 22nd International Symposium “Solid Freeform Fabrication Proceedings”,University of Texas,Austin,2011,547-556. [47] 欧园园. TiAl合金的选区激光熔化成形研究[D]. 南京:南京理工大学,2018. OU Yuanyuan. Research on the selective laser melting of TiAl alloy[D]. Nanjing:Nanjing University of Science and Technology,2018. [48] 杨益,党明珠,李伟,等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报,2020,56(3):181-188. YANG Yi,DANG Mingzhu,LI Wei,et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering,2020,56(3):181-188. [49] 石文天,王朋,刘玉德,等. 选区激光熔化TiAl合金裂纹产生机制及工艺优化试验研究[J]. 稀有金属,2019,43(4):349-358. SHI Wentian,WANG Peng,LIU Yude,et al. Crack initiation mechanism and experiment study of process optimization of TiAl alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals,2019,43(4):349-358. [50] SHI X Z,MA S Y,LIU C M,et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics &; Laser Technology,2017,90:71-79. [51] THOMAS M,MALOT T,AUBRY P,et al. The prospects for additive manufacturing of bulk TiAl alloy[J]. Materials at High Temperatures,2016,33(4):571-577. [52] DOUBENSKAIA M,DOMASHENKOV A,SMUROV I,et al. Study of selective laser melting of intermetallic TiAl powder using integral analysis[J]. International Journal of Machine Tools and Manufacture,2018,129:1-14. [53] SHI X,WANG H,FENG W,et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals &; Hard Materials,2020,91:105247. [54] CHEN G,PENG Y,ZHENG G,et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials,2016,15(8):876-881. [55] QIU Congzhang,LIU Yong,HUANG Lan,et al. Tuning mechanical properties for β(B2)-containing TiAl intermetallics[J]. Transactions of Nonferrous Metals Society of China,2012,22(11):2593-2603. [56] 陈玉勇,张树志,孔凡涛,等. 新型β-γTiAl合金的研究进展[J]. 稀有金属,2012,36(1):154-160. CHEN Yuyong,ZHANG Shuzhi,KONG Fantao,et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals,2012,36(1):154-160. [57] LOEBER L,SCHIMANSKY F P,KUHN U,et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology,2014,214(9):1852-1860. [58] GUSSONE J,HAGEDORN Y C,GHEREKHLOO H,et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures[J]. Intermetallics,2015,66:133-140. [59] GUSSONE J,GARCES G,HAUBRICH J,et al. Microstructure stability of γ-TiAl produced by selective laser melting[J]. Scripta Materialia,2017,130:110-113. [60] 李伟. 激光选区熔化成形钛铝合金微观组织与性能演变规律研究[D]. 武汉:华中科技大学,2017. LI Wei. Study on the microstructure and property evolution mechanism of TiAl-based alloy fabricated by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology,2017. [61] LI W,LIU J,ZHOU Y,et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting:Microstructure,phase and mechanical properties[J]. Journal of Alloys and Compounds,2016,688:626-636. [62] LI W,LIU J,ZHOU Y,et al. Texture evolution,phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process[J]. Intermetallics,2017,85:130-138. [63] KENEL C,DASARGYRI G,BAUER T,et al. Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures[J]. Materials &; Design,2017,134:81-90. [64] LI W,YANG Y,LIU J,et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia,2017,136:90-104. [65] LI W,LI M,YANG Y,et al. Enhanced compressive strength and tailored microstructure of selective laser melted Ti-46.5Al-2.5Cr-2Nb-0.5Y alloy with different boron addition[J]. Materials Science &; Engineering:A,2018,731:209-219. [66] LI W,LI M,LIU J,et al. Microstructure control and compressive properties of selective laser melted Ti-43.5Al-6.5Nb-2Cr-0.5B alloy influence of reduced graphene oxide (RGO) reinforcement[J]. Materials Science &; Engineering:A,2019,743:217-222. [67] 岳航宇. 电子束选区熔化成形Ti-47Al-2Cr-2Nb合金的组织及力学性能研究[D]. 哈尔滨:哈尔滨工业大学,2019. YUE Hangyu. Study on the microstructure and mechanical property of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[D]. Harbin:Harbin Institue of Technology,2019. [68] MURR L E,GAYTAN S M,CEYLAN A,et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia,2010,58(5):1887-1894. [69] TANG H P,YANG G Y,JIA W P,et al. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting[J]. Materials Science and Engineering:A,2015,636:103-107. [70] SCHWERDTFEGER J,CAROLIN K. Selective electron beam melting of Ti-48Al-2Nb-2Cr:Microstructure and aluminium loss[J]. Intermetallics,2014,49(3):29-35. [71] GE W,GUO C,LIN F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting[J]. Procedia Engineering,2014,81:1192-1197. [72] YUE H,CHEN Y,WANG X,et al. Effect of beam current on microstructure,phase,grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Journal of Alloys and Compounds,2018,750:617-625. [73] CHEN Y,YUE H,WANG X. Microstructure,texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering:A,2018,713:195-205. [74] ZHOU J,LI H X,YU Y F,et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan[J]. Intermetallics,2019,113:106575. [75] KLASSEN A,FORSTER V E,JUECHTER V,et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl[J]. Journal of Materials Processing Technology,2017,247:280-288. [76] CHEN Y,YUE H,WANG X,et al. Selective electron beam melting of TiAl alloy:Microstructure evolution,phase transformation and microhardness[J]. Materials Characterization,2018,142:584-592. [77] BIAMINO S,PENNA A,ACKELID U,et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy:Microstructure and mechanical properties investigation[J]. Intermetallics,2011,19(6):776-781. [78] TERNER M,BIAMINO S,EPICOCO P,et al. Electron beam melting of high niobium containing TiAl alloy:Feasibility investigation[J]. Steel Research International,2012,83(10):943-949. [79] BAUDANA G,BIAMINO S,KLODEN B,et al. Electron meam melting of Ti-48Al-2Nb-0.7Cr-0.3Si:Feasibility investigation[J]. Intermetallics,2016,73:43-49. [80] BAUDANA G,BIAMINO S,UGUES D,et al. Titanium aluminides for aerospace and automotive applications processed by electron beam melting:Contribution of Politecnico di Torino[J]. Metal Powder Report,2016,71:193-199. [81] 杨鑫,奚正平,刘咏,等. TiAl基合金电子束快速成形研究进展[J]. 稀有金属材料与工程,2011,40(12):2252-2256. YANG Xin,XI Zhengping,LIU Yong,et al. Research progress on electron beam melting rapid manufacturing of TiAl based alloys[J]. Rare Metal Materials and Engineering,2011,40(12):2252-2256. [82] TODAI M,NAKANO T,LIU T,et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing,2017,13:61-70. [83] NARAYANA P L,LI C L,KIM S W,at al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800℃[J]. Materials Science and Engineering:A,2019,756:41-45. [84] REINHOLD W,HELMUT C,SVEA M. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy[J]. Advanced Engineering Materials,2019,21(12):1900800.1-1900800.5. [85] 熊江涛,耿海滨,林鑫,等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术,2015,58(23-24):80-85. XIONG Jiangtao,GENG Haibin,LIN Xin,et al. Research status of wire and arc additive manufacturing and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology,2015,58(23-24):80-85. [86] 李中权,肖旅,李宝辉,等. 航天先进轻合金材料及成形技术研究综述[J]. 上海航天,2019,36(2):9-21. LI Zhongquan,XIAO Lü,LI Baohui,et al. Review of study on advanced light alloy materials and forming technique in spaceflight industry[J]. Aerospace Shanghai,2019,36(2):9-21. [87] MA Y,CUIURI D,HOYE N,et al. Characterizationt of in-situ alloyed and additively manufactured titanium aluminides[J]. Metallurgical and Materials Transactions:B,2014,45:2299-2303. [88] MA Y,CUIURI D,HOYE N,et al. Effect of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding[J]. Journal of Materials Research,2014,29:2066-2071. [89] MA Y,CUIURI D,HOYE N,et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science &; Engineering:A,2015,631:230-240. [90] MA Y,CUIURI D,SHEN C,et al. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J]. Additive Manufacturing,2015,8:71-77. [91] MA Y,CUIURI D,LI H,et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process[J]. Materials Science &; Engineering:A,2016,657:86-95. [92] SHEN C,LISS K D,REID M,et al. In-situ neutron diffraction characterization on the phase evolution of γ-TiAl alloy during the wire-arc additive manufacturing process[J]. Journal of Alloys and Compounds,2019,778:280-287. [93] WANG J,PAN Z,MA Y,et al. Characterization of wire arc additively manufactured titanium aluminide functionally graded material microstructure,mechanical properties and oxidation behaviour[J]. Materials Science &; Engineering:A,2018,734:110-119. [94] 杨广宇. 合金元素对Ti-Al-Nb-W基合金组织及变形行为的影响[D]. 长沙:中南大学,2011. YANG Guangyu. Effect of element on microstructure and deformation behavior of Ti-Al-Nb-W based alloy[D]. Changsha:Central South University,2011. [95] 王广甫. 合金化及热处理对新型β/γ-TiAl合金组织的影响[D]. 南京:南京理工大学,2013. WANG Guangfu. Effect of alloying and heat-treatment on the microstructure of the so-called β/γ-TiAl alloys[D]. Nanjing:Nanjing University of Science &; Technology,2013. [96] 曾旭. Hf、Si合金化及热处理对TiAl合金组织细化作用研究[D]. 哈尔滨:哈尔滨工业大学,2015. ZENG Xu. Effect of Hf,Si alloy and heat treatment on the microstructure refinement of TiAl alloy[D]. Harbin:Harbin Institute of Technology,2015. [97] 蒋孟玲. Nb含量对TiAl基合金组织与性能的影响[D]. 长沙:中南大学,2014. JIANG Mengling. Effect of Nb content on microstructure and property of TiAl based alloy[D]. Changsha:Central South University,2014. [98] 王林,沈忱,张弛,等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机,2020,50(4):1-12. WANG Lin,SHEN Chen,ZHANG Chi,et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology[J]. Electric Welding Machine,2020,50(4):1-12. [99] WANG W D,MA Y C,CHEN B,et al. Effects of boron addition on grain refinement in TiAl-based alloys[J]. Journal of Materials Science &; Technology,2010,26(7):639-647. [100] YANG Y,FENG H P,WANG Q,et al. Improvement of microstructure and mechanical properties of TiAl-Nb alloy by adding Fe element[J]. Transactions of Nonferrous Metals Society of China,2020,30(5):1315-1324. [101] 任海水,熊华平,吴欣,等. 钛铝系合金与镍基高温合金异种连接技术研究进展[J]. 机械工程学报,2017,53(4):1-10. REN Haishui,XIONG Huaping,WU Xin,et al. Research advances on the dissimilar joining of titanium aluminides and nickel-based superalloys[J]. Journal of Mechanical Engineering,2017,53(4):1-10. [102] 冯新,丁贤飞,李潇楠,等. 高Nb-TiAl合金激光焊接头组织与力学性能研究[J]. 焊接技术,2019,48(5):36-39. FENG Xin,DING Xianfei,LI Xiaonan,et al. Study on microstructures and mechanical properties of laser beam welded joint of high Nb containing TiAl based alloy[J]. Welding Technology,2019,48(5):36-39. [103] 张国会,秦仁耀,黄帅,等. 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法:中国,201910787395.7[P]. 2019-08-23. ZHANG Guohui,QIN Renyao,HUANG Shuai,et al. Preparation method of laser direct metal deposition for TiAl+Ti2AlNb composites:China,201910787395.7[P]. 2019-08-23. [104] 袁丁,高华兵,孙小婧,等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术,2018,61(10):40-48. YUAN Ding,GAO Huabing,SUN Xiaojing,et al. Methods and techniques for improve microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology,2018,61(10):40-48. [105] 阙文斌,林均品. 增材制造技术制备钛铝合金的研究进展[J]. 中国材料进展,2015,34(2):111-119. KAN Wenbin,LIN Junpin. Research progress on fabrication of TiAl alloys fabricated by additive manufacturing[J]. Materials China,2015,34(2):111-119. [106] 牛朋达,李瑞迪,袁铁锤,等. 增材制造高熵合金研究进展[J]. 精密成形工程,2019,11(4):51-57. NIU Pengda,LI Ruidi,YUAN Tiechui,et al. Research progress of high-entropy alloys by additive manufacturing[J]. Journal of Netshape Forming Engineering,2019,11(4):51-57. [107] CHAUVET E,TASSIN C,BLANDIN J J,et al. Producing Ni-base superalloys single crystal by selective electron beam melting [J]. Scripta Materials,2018,152:15-19. [108] LIANG Y J,LI J,LI A,et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys:New processing-microstructure maps involving powder feeding[J]. Materials &; Design,2017,130:197-207. [109] 张海鸥,向鹏洋,芮道满,等. 金属零件增量复合制造技术[J]. 航空制造技术,2015,479(10):34-36. ZHANG Haiou,XIANG Pengyang,RUI Daoman,et al. Hybrid additive manufacturing method of metallic parts[J]. Aeronautical Manufacturing Technology,2015,479(10):34-36. [110] 杨智帆,张永康. 复合增材制造技术研究进展[J]. 电加工与模具,2019,346(2):1-7. YANG Zhifan,ZHNAG Yongkang. Research and development of hybrid additive manufacturing technology[J]. Journal of Netshape Forming Engineering,2019,346(2):1-7. [111] SEALY M P,MADIREDDY G,WILLIAMS R E,et al. Hybrid process in additive manufacturing[J]. Journal of Manufacturing Science and Engineering,2018,140:060801. [112] YASA E,KRUTH J,DECKERS J. Manufacturing by combining selective laser melting and of selective laser erosion/laser re-melting[J]. CIRP Annals,2011,60(1):263-266. [113] KALENTICS N,BOILLAT E,PEYRE P,et al. 3D laser shock peening:A new method for the 3D control of residual stress in selective laser melting[J]. Materials Design,2017,130:350-356. [114] LIU F C,CHENG H M,YU X B,et al. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring[J]. Optics &; Laser Technology,2018,99(1):342-350. [115] ZHAI L L,BAN C Y,ZHANG J W,et al. Characteristics of dilution and microstructure in laser cladding Ni-Cr-B-Si coating assisted by electromagnetic compound field[J]. Materials Letter,2019,243:195-198. [116] LIU Y,SUN G F,WANG Z D,et al. Effect of electromagnetic field on the laser direct metal deposition of austenitic stainless steel[J]. Optics &; Laser Technology,2019,199:105586. [117] LI N, LIU W, XIONG H P, et al. In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC+Ti3SiC2) system functionally graded material[J]. Materials and Design, 2019, 183:108155. [118] LI S N, XIONG H P, LI N, et al. Mechanical properties and formation mechanisam of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International, 2017, 43:961-967. [119] ZHANG H O,RUI D M,XIE Y,et al. Study on metamorphic rolling mechanism for metal hybrid additive manufacturing[J]. Solid Freeform Fabrication Symposium,Austin,2013,12-14:188-189. [120] 汤慧萍,王建,逯圣路,等. 电子束选区熔化成形技术研究现状[J]. 中国材料进展,2015,34(3):225-235. TANG Huiping,WANG Jian,LU Shenglu,et al. Research progress in selective electron beam melting[J]. Materials China,2015,34(3):225-235. [121] 李安,刘世锋,王伯健,等. 3D打印用金属粉末制备技术研究进展[J]. 钢铁研究学报,2018,30(6):419-426. LI An,LIU Shifeng,WANG Bojian,et al. Research progress on preparation of metal powder for 3D printing[J]. Journal of Iron and Steel Research,2018,30(6):419-426. [122] 高超峰,余伟泳,朱权利,等. 3D打印用金属粉末的性能及研究进展[J]. 粉末冶金工业,2017,27(5):53-58. GAO Chaofeng,YU Weiyong,ZHU Quanli,et al. Performance characteristics and research progress of metal powders for 3D printing[J]. Powder Metallurgy Industry,2017,27(5):53-58. [123] LIU W,XIONG H P,LI N,et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition[J]. Acta Metallurgica Sinica (English Letters),2018,31(4):362-370. |
[1] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[2] | ZHANG Yunshu, WU Bintao, ZHAO Yun, DING Donghong, PAN Zengxi, LI Huijun. Research Progress in the Numerical Simulation of Heat and Mass Transfer during Wire Arc Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(8): 65-80. |
[3] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[4] | GU Yufen, LU Na, SHI Yu, SUN Qingling. Microstructure Characteristics of 16MnDR Steel Welded Joint and Its Corrosion Behavior in Hydrofluoric Acid Environment [J]. Journal of Mechanical Engineering, 2024, 60(8): 196-203. |
[5] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[6] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[7] | DU Wenbo, LI Xiaoliang, LI Xia, HU Shenheng, ZHU Sheng. Research Status of Additive Friction Stir Deposition Process [J]. Journal of Mechanical Engineering, 2024, 60(7): 374-384. |
[8] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[9] | DU Jun, WANG Qianyuan, HE Jimiao, ZHANG Yongheng, WEI Zhengying. Influence of the Offset Distance between Droplet and Molten Pool on the Molten Pool Morphology in TIG-assisted Droplet Deposition Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(5): 219-230. |
[10] | CUI Guihan, YANG Chunli. Strengthening and Toughening Mechanism of Weld Metals on GMAW-P of High Strength and High Toughness Welding Wire [J]. Journal of Mechanical Engineering, 2024, 60(4): 326-334. |
[11] | MA Yixing, YANG Yutao, GUAN Xiaohu, YANG Qi, ZHAO Tongxin. Microstructure and Interfacial Bonding Property of a Hot-roll-bonded TWIP/IF Steel Composite Plate [J]. Journal of Mechanical Engineering, 2024, 60(4): 345-356. |
[12] | JIANG Zhoumingju, XIONG Yi, WANG Baicun. Human-machine Collaborative Additive Manufacturing for Industry 5.0 [J]. Journal of Mechanical Engineering, 2024, 60(3): 238-253. |
[13] | SHI Yilei, QUAN Yinzhu, XU Haiying, WANG Zhuang, MA Wenlong, PENG Yong. Factors Analysis on the Electron Beam Waist Position of Gas Discharger Electron Beam Gun of Coaxial Beam Wire [J]. Journal of Mechanical Engineering, 2024, 60(3): 328-336. |
[14] | RONG Peng, Cheng Jing, DENG Hongwen, TAO Changan, GAO Chuanyun, RAN Xianzhe, CHENG Xu, TANG Haibo, LIU Dong. Effect of Different Heat Treatments on Microstructure and Tensile Properties of TC4 Titanium Alloy Fabricated by Laser Directed Energy Deposition [J]. Journal of Mechanical Engineering, 2024, 60(20): 99-107. |
[15] | MAO Aiqin, CHEN Shijie, JIA Yanggang, SHAO Xia, QUAN Feng, ZHANG Hui, ZHANG Yiwei, JIN Ying, JIN Xia. Effect of Aluminum Content on Microstructure and Properties of Powder Metallurgy CoCrFeMnNi High-entropy Alloy [J]. Journal of Mechanical Engineering, 2024, 60(20): 134-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||