Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (3): 156-173.doi: 10.3901/JME.2021.03.156
Previous Articles Next Articles
LIU Kuo1,2, HAN Wei1, WANG Yongqing1, LIU Haibo1, SONG Lei1
Received:
2020-05-10
Revised:
2020-11-14
Online:
2021-02-05
Published:
2021-03-16
CLC Number:
LIU Kuo, HAN Wei, WANG Yongqing, LIU Haibo, SONG Lei. Review on Thermal Error Compensation for Feed Axes of CNC Machine Tools[J]. Journal of Mechanical Engineering, 2021, 57(3): 156-173.
[1] MAYR J, JEDRZEJEWSKI J,UHLMANN E,et al. Thermal issues in machine tools[J]. CIRP Annals- Manufacturing Technology,2012,61(2):771-791. [2] RAMESH R,MANNAN M,POO A. Error compensation in machine tools-a review Part II:Thermal errors[J]. International Journal of Machine Tools & Manufacture,2000,40(9):1257-1284. [3] YANG J,SHI H,FENG B,et al. Thermal error modeling and compensation for a high-speed motorized spindle[J]. The International Journal of Advanced Manufacturing Technology,2015,77(5-8):1005-1017. [4] BLASER P,PAVLIEK F,MORI K,et al. Adaptive learning control for thermal error compensation of 5-axis machine tools[J]. Journal of Manufacturing Systems,2017,44:302-309. [5] FUJISHIMA M,NARIMATSU K,IRINO N,et al. Thermal displacement reduction and compensation of a turning center[J]. CIRP Journal of Manufacturing Science and Technology,2018,22:111-115. [6] PUTZ M,REGEL J,WENZEL A,et al. Thermal errors in milling:Comparison of displacements of the machine tool,tool and workpiece[C]//Procedia CIRP. Sheffield,United kingdom:2019,82:389-394. [7] LIU M,ZHANG X,SONG H,et al. Inverse finite element method for reconstruction of deformation in the gantry structure of heavy-duty machine tool using FBG sensors[J]. Sensors (Switzerland),2018,18(7):2173. [8] TANABE I,TAKADA K. Thermal deformation of machine tool structures using resin concrete (thermal behaviour of concrete bed of machine tool in fluctuating ambient temperature)[J]. JSME International Journal,Series C:Dynamics,Control,Robotics,Design and Manufacturing,1994,37(2):384-389. [9] LIU K,LIU Y,SUN M,et al. Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center[J]. International Journal of Advanced Manufacturing Technology,2017,88(9-12):2507-2516. [10] LI Y,ZHAO W,LAN S,et al. A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture,2015,95:20-38. [11] LIANG Y,SU H,LU L,et al. Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method[J]. The International Journal of Advanced Manufacturing Technology,2015,76(1-4):635-645. [12] 高建民,史晓军,许艾明,等. 高速高精度机床热分析与热设计技术[J]. 中国工程科学,2013,15(1):28-33. GAO Jianmin,SHI Xiaojun,XU Aiming,et al. Thermal analysis and design technology of high-speed and high-precision machine tools[J]. Strategic Study of CAE,2013,15(1):28-33. [13] ZHANG J F,FENG P F,WU Z J,et al. Thermal structure design and analysis of A machine tool headstock[J]. Mechanika,2013,19(4):478-485. [14] TAMAI A,KURITA T,MATSUE T,et al. Machine tool slide protection-uses thermal insulation or shrouding to equalise thermal distortion through ambient or operating conditions.:China,DE3527491-A; JP61038832-A; JP61038833-A[P]. JP16093031 Jul 1984 JP16093131 Jul 1984:1986-02-13. [15] AGGOGERI F,MERLO A,PELLEGRINI N. A novel concept to design machine tool structures using multifunctional materials[C]//HINDUJA S,LI L. Proceedings of the 36th International MATADOR Conference. London:Springer,2010:165-168. [16] XU Z Z,LIU X J,KIM H K,et al. Thermal error forecast and performance evaluation for an air-cooling ball screw system[J]. International Journal of Machine Tools & Manufacture,2011,51(7-8):605-611. [17] KORETA N,JINNO K,ROKKAKU T,et al. Thermoelectric cooling of machine tool spindle[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,1994,60(5):652-656. [18] BARTA P,HORNYCH J,HOREJ O. Active control of a machine tool cooling system[C]//Proceedings of the 10th Anniversary International Conference of the European Society for Precision Engineering and Nanotechnology,EUSPEN 2008. Zurich,Switzerland:2008,1:384-388. [19] SUN L,REN M,HONG H,et al. Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool[J]. The International Journal of Advanced Manufacturing Technology,2017,88(5-8):1267-1277. [20] 傅建中,陈子辰. 精密机械热误差校正机理及参数遗传优化[J]. 浙江大学学报,2003(6):91-95. FU Jianzhong,CHEN Zichen. Thermal error calibration principle of precision machine and parameter genetic optimization algorithms[J]. Journal of Zhejiang University,2003(6):91-95. [21] MEKID S,OGEDENGBE T. A review of machine tool accuracy enhancement through error compensation in serial and parallel kinematic machines[J]. International Journal of Precision Technology,2010,1(3/4):251-286. [22] SVOBODA N,WANG N. Straightness and squareness errors' development due to thermal effects[C]//Laser Metrology and Machine Performance VIII-8th International Conference and Exhibition on Laser Metrology,Machine Tool,CMM and Robotic Performance,LAMDAMAP 2007. Cranfield,United kingdom:2007:186-195. [23] ZHANG Y,YANG J,XIANG S,et al. Volumetric error modeling and compensation considering thermal effect on five-axis machine tools[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2013,227(5):1102-1115. [24] OKAFOR A C,ERTEKIN Y M. Vertical machining center accuracy characterization using laser interferometer Part 2. Angular errors[J]. Journal of Materials Processing Technology,2000,105(3):407-420. [25] LIU K,LIU Y,SUN M,et al. Comprehensive thermal compensation of the servo axes of CNC machine tools[J]. International Journal of Advanced Manufacturing Technology,2016,85(9-12):2715-2728. [26] OYANGUREN A,ULACIA I,LARRANAGA J,et al. Prediction of heat generation and temperature distribution in high speed preloaded ball screws[J]. Key Engineering Materials,2014,572(1):363-366. [27] ZHANG Z,HU Y,WANG X. Comprehensive analysis and calculation discuss about preload stretching force of screw system[J]. Journal of Mechanical Engineering,2015,51(23):175-181. [28] LIU K,WANG Y,LIU Y,et al. Research on thermo-mechanical coupled experiments and thermal deformation evolution of preloaded screw[J]. International Journal of Advanced Manufacturing Technology,2018,99(9-12):2441-2450. [29] LI Y,ZHAO J,JI S. A reconstructed variable regression method for thermal error modeling of machine tools[J]. International Journal of Advanced Manufacturing Technology,2017,90(9-12):3673-3684. [30] 郭前建,徐汝锋,贺磊,等. 基于逐步回归的机床温度测点优化及热误差建模技术[J]. 制造技术与机床,2015(12):89-92. GUO Qianjian,XU Rufeng,HE Lei,et al. Temperature measurement point optimization and thermal error modeling of CNC machine tools based on stepwise regression[J]. Manufacturing Technology & Machine Tool,2015(12):89-92. [31] CHEN S H,TSAI Y L. The machine-tool temperature variation measurement and compensation using regression analysis method[C]//2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE). Tainan,Taiwan:IEEE,2016:673-676. [32] KRULEWICH D A. Temperature integration model and measurement point selection for thermally induced machine tool errors[J]. Mechatronics,1998,8(4):395-412. [33] 杨军,梅雪松,赵亮,等. 基于模糊聚类测点优化与向量机的坐标镗床热误差建模[J]. 上海交通大学学报,2014,48(8):1175-1182,1188. YNAG Jun,MEI Xuesong,ZHAO Liang,et al. Thermal Error modeling of a coordinate boring machine based on fuzzy clustering and SVM[J]. Journal of Shanghai Jiao Tong University,2014,48(8):1175-1182,1188. [34] 孙志超,陶涛,黄晓勇,等. 车床主轴与进给轴耦合热误差建模及补偿研究[J]. 西安交通大学学报,2015,49(7):105-112. SUN Zhichao,TAO Tao,HUANG Xiaoyong,et al. Modeling and compensation of coupled thermal error off spindle and feed shaft[J]. Journal of Xi'an Jiaotong Universiy,2015,49(7):105-112. [35] HAN J,WANG L,WANG H,et al. A new thermal error modeling method for CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology,2012,62(1-4):205-212. [36] HAO W,HONGTAO Z,QIANJIAN G,et al. Thermal error optimization modeling and real-time compensation on a CNC turning center[J]. Journal of Materials Processing Technology,2008,207(1-3):172-179. [37] 张琨,张毅,侯广锋,等. 基于热模态分析的热误差温度测点优化选择[J]. 机床与液压,2012,40(7):1-3. ZHANG Kun,ZHANG Yi,HOU Guangfeng,et al. Selection of sensor placement for thermal error compensation based on thermal mode analysis[J]. Machine Tool & Hydraulics,2012,40(7):1-3. [38] LI Y X,YANG J G,GELVIS T,et al. Optimization of measuring points for machine tool thermal error based on grey system theory[J]. The International Journal of Advanced Manufacturing Technology,2008,35(7-8):745-750. [39] YAN J Y,YANG J G. Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation[J]. Int. J. Adv. Manuf. Technol.,2009,43(11-12):1124-1132. [40] 马驰,杨军,梅雪松,等. 基于遗传算法及BP网络的主轴热误差建模[J]. 计算机集成制造系统,2015,21(10):2627-2636. MA Chi,YANG Jun,MEI Xuesong,et al. High-speed spindle thermal error modelling based on genetic algorithm and BP neural network[J]. Computer Integrated Manufacturing System,2015,21(10):2627-2636. [41] 马驰,赵亮,梅雪松,等. 基于粒子群算法与BP网络的机床主轴热误差建模[J]. 上海交通大学学报,2016,50(5):686-695. MA Chi,ZHAO Liang,MEI Xuesong,et al. Thermal error modeling of machine tool spindle based on particle swarm optimization and Neural Network[J]. Journal of Shanghai Jiao Tong University,2016,50(5):686-695. [42] CHENG Q,QI Z,ZHANG G,et al. Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. International Journal of Advanced Manufacturing Technology,2016,83(5-8):753-764. [43] NAUMANN C,RIEDEL I,IHLENFELDT S,et al. Characteristic diagram based correction algorithms for the thermo-elastic deformation of machine tools[C]//Procedia CIRP. Ischia,Italy:2016,41:801-805. [44] VYROUBAL J. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method[J]. Precision Engineering,2012,36(1):121-127. [45] LI Y,ZHAO W,WU W,et al. Thermal error modeling of the spindle based on multiple variables for the precision machine tool[J]. International Journal of Advanced Manufacturing Technology,2014,72(9-12):1415-1427. [46] LI Y,ZHAO W,WU W,et al. Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction[J]. The International Journal of Advanced Manufacturing Technology,2017,90(9-12):2803-2812. [47] DU Z,YAO X,HOU H,et al. A fast way to determine temperature sensor locations in thermal error compensation[J]. The International Journal of Advanced Manufacturing Technology,2018,97(1-4):455-465. [48] 李晟,姚鑫骅,傅建中. 基于通信质量约束的主轴热监测无线传感器布点优化[J]. 浙江大学学报,2013,47(7):1281-1286. LI Sheng,YAO Xinhua,FU Jianzhong. Communicating quality constraint-based location optimization of wireless sensor in thermal monitoring of spindle[J]. Journal of Zhejiang University,2013,47(7):1281-1286. [49] LI Q,LI H. A general method for thermal error measurement and modeling in CNC machine tools spindle[J]. International Journal of Advanced Manufacturing Technology,2019,103(5-8):2739-2749. [50] LIU K,LI T,WANG Y,et al. Physically based modeling method for comprehensive thermally induced errors of CNC machining centers[J]. International Journal of Advanced Manufacturing Technology,2018,94(1-4):463-474. [51] YUAN S,PENG F,ZHOU L,et al. Analysis and modeling of the thermal errors of carriage system of a precision machine tool driven by linear motor[J]. Key Engineering Materials,2014,579-580:645-653. [52] 杨军,施虎,梅雪松,等. 双驱伺服进给系统热误差的试验测量与预测模型构建[J]. 西安交通大学学报,2013,47(11):53-59. YANG Jun,SHI Hu,MEI Xuesong,et al. Measurement and modeling of thermal errors in dual-driver servo feed system[J]. Journal of Xi'an Jiaotong University,2013,47(11):53-59. [53] 马军旭,周长兴,张俊,等. 环境温度对数控机床直线运动轴位置偏差的影响[J]. 天津大学学报,2017,50(6):579-585. MA J X,ZHOU C X,ZHANG J,et al. Influence of ambient temperature on positional deviation of linear axis of cnc machine tool[J]. Journal of Tianjin University,2017,50(6):579-585. [54] LIU J,MA C,WANG S. Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools[J]. Mechanical Systems and Signal Processing,2020,138:106538. [55] ZHANG J,LI B,ZHOU C,et al. Positioning error prediction and compensation of ball screw feed drive system with different mounting conditions[J]. Proceedings of The Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2016,230(12):2307-2311. [56] SHI H,MA C,YANG J,et al. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools[J]. International Journal of Machine Tools & Manufacture,2015,97:60-71. [57] PAJOR,MIROSLAW,ZAPLATA,JACEK. Compensation of thermal deformations of the feed screw in a CNC machine tool[J]. Advances in Manufacturing Science and Technology,2011,4(35):9-17. [58] 孙志超,侯瑞生,陶涛,等. 数控车床综合热误差建模及工程应用[J]. 哈尔滨工业大学学报,2016,48(1):107-113. SUN Zhichao,HOU Ruisheng,TAO Tao,et al. Comprehensive thermal error modeling for NC lathe in engineering application[J]. Journal of Harbin Institute of Technology,2016,48(1):107-113. [59] CUI L,GAO W,ZHANG D,et al. Thermal error compensation for telescopic spindle of CNC machine tool based on SIEMENS 840D system[J]. Transactions of Tianjin University,2011,17(5):340-343. [60] ZHU J,NI J,SHIH A J. Robust machine tool thermal error modeling through thermal mode concept[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2008,130(6):0610061-0610069. [61] YANG H,NI J. Dynamic neural network modeling for nonlinear,nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture,2005,45(4-5):455-465. [62] JIN C,WU B,HU Y. Wavelet neural network based on NARMA-L2 model for prediction of thermal characteristics in a feed system[J]. Chinese Journal of Mechanical Engineering,2011,24(1):33-41. [63] YAO X,FU J,XU Y,et al. Synthetic error modeling for NC machine tools based on intelligent technology[C]//Procedia CIRP. Huddersfield,United kingdom:2013,10:91-97. [64] ZHANG Y,WANG P,LIU T,et al. Active and intelligent control onto thermal behaviors of a motorized spindle unit[J]. International Journal of Advanced Manufacturing Technology,2018,98(9-12):3133-3146. [65] 吴雄彪,姚鑫骅,傅建中. 基于贝叶斯网络的数控机床热误差建模[J]. 中国机械工程,2009,20(3):293-296. WU Xiongbiao,YAO Xinhua,FU Jianzhong. Thermal error modeling of NC machine tools based on Bayesian networks[J]. China Mechanical Engineering,2009,20(3):293-296. [66] YANG Z,SUN M,LI W,et al. Modified Elman network for thermal deformation compensation modeling in machine tools[J]. International Journal of Advanced Manufacturing Technology,2011,54(5-8):669-676. [67] HUANG Y,ZHANG J,LI X,et al. Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle[J]. International Journal of Advanced Manufacturing Technology,2014,71(9-12):1669-1675. [68] LI X,LEI Q,LI Z H. Application of a Bayesian network to thermal error modeling and analysis for machine tool[C]//Key Engineering Materials. 2011,455:616-620. [69] 李永祥,杨建国. 灰色系统模型在机床热误差建模中的应用[J]. 中国机械工程,2006,17(23):2439-2442. LI Yongxiang,YANG Jianguo. Application of grey system model to thermal error modeling on machine tools[J]. China Mechanical Engineering,2006,17(23):2439-2442. [70] ZHANG Y,YANG J. Modeling for machine tool thermal error based on grey model preprocessing neural network[J]. Journal of Mechanical Engineering,2011,47(7):134-139. [71] JIANG H,YANG J-G. Application of an optimized grey system model on 5-Axis CNC machine tool thermal error modeling[C]//2010 International Conference on E-Product E-Service and E-Entertainment,ICEEE2010. 2010. [72] LEI M,YANG J,WANG S,et al. Semi-supervised modeling and compensation for the thermal error of precision feed axes[J]. International Journal of Advanced Manufacturing Technology,2019,104(9-12):4629-4640. [73] LIN W,FU J,CHEN Z,et al. Modeling of NC machine tool thermal error based on adaptive best-fitting WLS-SVM[J]. Journal of Mechanical Engineering,2009,45(3):178-182. [74] 林伟青,傅建中,陈子辰,等. 数控机床热误差的动态自适应加权最小二乘支持矢量机建模方法[J]. 机械工程学报,2009,45(03):178-182. LIN Weiqing,FU Jianzhong,CHEN Zichen,et al. Modeling of NC machine tool thermal error based on adaptive best-fitting WLS-SVM[J]. Journal of Mechanical Engineering,2009,45(03):178-182. [75] 林伟青,傅建中,许亚洲,等. 基于最小二乘支持向量机的数控机床热误差预测[J]. 浙江大学学报,2008(6):905-908. LIN Weiqing,FU Jianzhong,XU Yazhou,et al. Thermal error prediction of numerical control machine tools based on least squares support vector machines[J]. Journal of Zhejiang University,2008(6):905-908. [76] 余文利,姚鑫骅,傅建中,等. 贝叶斯证据框架下的LS-SVM多工况数控机床热误差建模[J]. 中国机械工程,2014,25(17):2361-2368. YU Wenli,YAO Xinhua,FU Jianzhong,et al. Modeling of CNC machine tool thermal errors based on LS-SVM within Bayesian evidence framework[J]. China Mechanical Engineering,2014,25(17):2361-2368. [77] BAUM C,BRECHER C,KLATTE M,et al. Thermally induced volumetric error compensation by means of integral deformation sensors[C]//Procedia CIRP. 2018,72:1148-1153. [78] DU Z,YAO S,YANG J. Thermal behavior analysis and thermal error compensation for motorized spindle of machine tools[J]. International Journal of precision Engineering and Manufacturing,2015,16(7):1571-1581. [79] 颜宗卓,陶涛,侯瑞生,等. 机床电主轴热特性卷积建模研究[J]. 西安交通大学学报,2019,53(6):1-8. YAN Zongzhuo,TAO Tao,HOU Ruisheng,et al. Convolution modeling for thermal properties of motorized spindle in machine tool[J]. Journal of Xi'an Jiaotong University,2019,53(6):1-8. [80] MA C,ZHAO L,MEI X,et al. Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology,2017,89(9-12):3071-3085. [81] LI Y,ZHANG J,SU D,et al. Experiment-based thermal behavior research about the feed drive system with linear scale[J]. Advances in Mechanical Engineering,2018,10(11):1-10. [82] 余文利,姚鑫骅,孙磊,等. 基于PLS和改进CVR的数控机床热误差建模[J]. 农业机械学报,2015,46(2):357-364. YU Wenli,YAO Xinhua,SUN Lei,et al. Thermal error modeling of CNC machine tool based on partial least squares and improved core vector regression[J]. Transactions of the Chinese Society for Agricultural Machinery.,2015,46(2):357-364. [83] 李晟,姚鑫骅,傅建中,等. 热电耦合无线传感能量管理系统及其在精密主轴热监测中的应用[J]. 光学精密工程,2014,22(9):2389-2398. LI Sheng,YAO Xinhua,FU Jianzhong,et al. Power management system for thermoelectric coupling wireless sensing and its application to thermal monitoring of precision spindle[J]. Optics and Precision Engineering,2014,22(9):2389-2398. [84] MITSUISHI M,WARISAWA S,HANAYAMA R. Development of an intelligent high-speed machining center[J]. CIRP Annals,2001,50(1):275-280. [85] YIN L,CHEN J,LI H,et al. Research and development of thermal error compensation embedded in CNC system[C]//Proceedings-2010 International Conference on Computational and Information Sciences,ICCIS 2010. 2010:861-864. [86] UHLMANN E,SAOJI M,PEUKERT B. Utilization of Thermal energy to compensate quasi-static deformations in modular machine tool frames[J]. Procedia CIRP,2016,40:1-6. [87] LIU K,LIU H,LI T,et al. Prediction of comprehensive thermal error of a preloaded ball screw on a gantry milling machine[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2018,140(2):1-9. [88] LIU K,LIU H,LI T,et al. Intelligentization of machine tools:Comprehensive thermal error compensation of machine-workpiece system[J]. International Journal of Advanced Manufacturing Technology,2019,102(9-12):3865-3877. [89] LIU K,SUN M,WU Y,et al. Comparison of accuracy stability using a thermal compensator and grating ruler[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2016,38(8):2403-2411. [90] 刘阔,孙名佳,吴玉亮,等. 无温度传感器的数控机床进给轴热误差补偿[J]. 机械工程学报,2016,52(15):162-169. LIU Kuo,SUN Mingjia,WU Yuliang,et al. Thermal error compensation without temperature sensors for CNC machine tools' feed drive system[J]. Journal of Mechanical Engineering,2016,52(15):162-169. [91] YANG J,ZHANG D,MEI X,et al. Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system[J]. Proceedings of The Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2015,229(1):43-63. [92] YANG J,MEI X,FENG B,et al. Experiments and simulation of thermal behaviors of the dual-drive servo feed system[J]. Chinese Journal of Mechanical Engineering,2015,28(1):76-87. [93] MA C,LIU J,WANG S. Thermal error compensation of linear axis with fixed-fixed installation[J]. International Journal of Mechanical Sciences,2020:175. [94] IBARAKI S,OTA Y. A machining test to calibrate rotary axis error motions of five-axis machine tools and its application to thermal deformation test[J]. International Journal of Machine Tools and Manufacture,2014,86:81-88. [95] JIANG X,CRIPPS R J. A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar[J]. International Journal of Machine Tools and Manufacture,2015,89:151-158. [96] TSUTSUMI M,SAITO A. Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements[J]. International Journal of Machine Tools and Manufacture,2004,44(12-13):1333-1342. [97] MAYR J. Thermal error compensation of rotary axes and main spindles using cooling power as input parameter[J]. Journal of Manufacturing Systems,2015:8. [98] SITONG X,ZHENGCHUN D,JIANGUO Y. Recent Advances in measurement and modeling of geometric and thermal error of CNC machine tools[J]. Machine Design and Research,2019,35(6):52-57. [99] WEIKERT S. R-test,a new device for accuracy measurements on five axis machine tools[J]. CIRP Annals-Manufacturing Technology,2004,53(1):429-432. [100] GEBHARDT M. Measurement set-ups and -cycles for thermal characterization of axes of rotation of 5-axis machine tools[C]//EUSPEN,2012,1:486-489. [101] HONG C,IBARAKI S. Observation of thermal influence on error motions of rotary axes on a five-axis machine tool by static R-test[J]. International Journal of Automation Technology,2012,6(2):196-204. [102] IBARAKI S,HONG C F. Thermal test for error maps of rotary axes by R-test[J]. Key Engineering Materials,2012,523-524:809-814. [103] BITAR-NEHME E,MAYER J R R. Thermal volumetric effects under axes cycling using an invar R-test device and reference length[J]. International Journal of Machine Tools and Manufacture,2016,105:14-22. [104] MAYR J,MÜLLER M,WEIKERT S. Automated thermal main spindle & B-axis error compensation of 5-axis machine tools[J]. CIRP Annals,2016,65(1):479-482. [105] LEI W T,SUNG M P,LIU W L,et al. Double ballbar test for the rotary axes of five-axis CNC machine tools[J]. International Journal of Machine Tools and Manufacture,2007,47(2):273-285. [106] BRECHER C,SPIERLING R,DU BOIS-REYMOND F,et al. Thermo-elastic deformation of rotary axes[C]//Laser Metrology and Machine Performance XII-12th International Conference and Exhibition on Laser Metrology,Machine Tool,CMM and Robotic Performance,LAMDAMAP 2017. Wotton-under- Edge,United kingdom:2017,2017-January:111-121. [107] GEBHARDT M,SCHNEEBERGER A,WEIKERT S,et al. Thermally caused location errors of rotary axes of 5-axis machine tools[J]. International Journal of Automation Technology,2014,8(4):511-522. [108] GEBHARDT M,CAPPARELLI S,ESS M,et al. Physical and phenomenological simulation models for the thermal compensation of rotary axes of machine tools[C]//EUSPEN,2013,1:304-309. [109] GEBHARDT M,KNAPP DR. W,WEGENER DR. K. Messung thermischer einflusse auf werkzeugmaschinen zur steuerungsseitigen fehlerkorrektur am beispiel von dreh-/schwenkachsen[J]. Technisches Messen,2014,81(4):158-165. GEBHARDT M,KNAPP DR. W,WEGENER DR. K. Measurement of thermal influences on machine tools for axis correction using the example of rotary-/swivelling axes[J]. Technisches Messen,2014,81(4):158-165. [110] GEBHARDT M. Thermal behaviour and compensation of rotary axes in 5-axis machine tools[D]. Swiss:Swiss Federal Institute of Technology Zurich,2014. [111] BITAR-NEHME E,MAYER J R R. Modelling and compensation of dominant thermally induced geometric errors using rotary axes' power consumption[J]. CIRP Annals,2018,67(1):547-550. |
[1] | LIU Zhanguang, ZHANG Yun, LIU Qingyu. Modeling for CNC Machine Tool Thermal Error Based on DF-LSTM [J]. Journal of Mechanical Engineering, 2024, 60(7): 249-257. |
[2] | RAN Yan, TIAN Ke, DOU Yifan, JIN Chuanxi, ZHANG Genbao, MU Zongyi. Kinematic Error Transfer and Integrated Precision Modeling of the Meta-action Chain for CNC Machine Tools [J]. Journal of Mechanical Engineering, 2023, 59(23): 211-220. |
[3] | YANG Zhaojun, HE Jialong, LIU Zhifeng, LI Guofa, CHEN Chuanhai. Recent Progress in Reliability Technology of CNC Machine Tools [J]. Journal of Mechanical Engineering, 2023, 59(19): 152-163. |
[4] | HUANG Zuguang, WANG Shuhui, WANG Jinjiang, ZHANG Fengli. Research on Comprehensive Evaluation Method of CNC Machine Tools Based on RAMS [J]. Journal of Mechanical Engineering, 2022, 58(9): 218-230. |
[5] | ZHANG Jiantao, LIU Zhifeng, LI Yansheng, JIANG Kai, YANG Congbin, ZHANG Caixia. Research on Displacement Deformation of the Heavy-duty CNC Machine Tool-Foundation System Based on Similarity Theory [J]. Journal of Mechanical Engineering, 2022, 58(7): 309-316. |
[6] | LIU Kuo, SONG Lei, CHEN Hu, HAN Wei, CUI Yiming, WANG Yongqing. Mechanism-driven Method for Time-varying Error Modeling and Compensation of CNC Machine Tool's Feed Axes [J]. Journal of Mechanical Engineering, 2022, 58(3): 251-258. |
[7] | DU Liuqing, HU Jie, YU Yongwei. Prediction of Machine Tool's Motion Accuracy Deterioration Based on Chaotic Evolution of Thermal Error [J]. Journal of Mechanical Engineering, 2022, 58(11): 231-240. |
[8] | MENG Boyang, LI Maoyue, LIU Xianli, WANG Lihui, LIANG S Y, WANG Zhixue. Research Progress on the Architecture and Key Technologies of Machine Tool Intelligent Control System [J]. Journal of Mechanical Engineering, 2021, 57(9): 147-166. |
[9] | LAN Yipeng, YAO Wanting, YANG Wenkang, LEI Cheng. Direct Adaptive Control of Neural Network of Magnetic Levitation System of CNC Machine Tool Linear Synchronous Motor [J]. Journal of Mechanical Engineering, 2021, 57(17): 236-242. |
[10] | WANG Yongqing, WU Jiakun, LIU Kuo, LIU Haibo, LIU Zhisong, LIAN Meng. Quantitative Evaluation and Error Sensitivity Analysis of Accuracy Retentivity of CNC Machine Tools [J]. Journal of Mechanical Engineering, 2019, 55(5): 130-136. |
[11] | LI Bin, ZHANG Yun, WANG Liping, LI Xuekun. Modeling for CNC Machine Tool Thermal Error Based on Genetic Algorithm Optimization Wavelet Neural Networks [J]. Journal of Mechanical Engineering, 2019, 55(21): 215-220. |
[12] | DING Qicheng, WANG Wei, JIANG Zhong, ZHANG Jing, DU Li, WANG Liping. Comparison of the Generating Method and Detecting Ability of RTCP Trajectories for Five-axis CNC Machine Tool [J]. Journal of Mechanical Engineering, 2019, 55(20): 116-127. |
[13] | LIN Xiankun, FAN Zhenhua, WANG Yihan, ASKHAT. Online Compensation of Full-stroke Thermal Error for Dual Direct Feed Axis with Hybrid KPLS and Fuzzy Logic Method [J]. Journal of Mechanical Engineering, 2017, 53(9): 164-169. |
[14] | WANG Wei, LI Qingzhao, KANG Wenjun, TAO Wenjian, DU Li. Method of Machining Error Tracing and Processing Performance Evaluation for Five-axis CNC Machine Tool Based on the Comprehensive Evaluation System [J]. Journal of Mechanical Engineering, 2017, 53(21): 149-157. |
[15] | GAO Feng, ZHAO Bohan, LI Yan, WANG Chunjun. On-machine Measurement Scheme Generation and Optimization Method for Multi-axis CNC Machine Tool [J]. Journal of Mechanical Engineering, 2017, 53(20): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||