[1] RICHARD H A,SANDER M,FULLAND M,et al. Fatigue crack growth in real structures[J]. International Journal of Fatigue,2013,50:83-88. [2] RICHARD H A,SCHRAMM B,SCHIRMEISEN N H. Cracks on mixed mode loading:Theories,experiments,simulations[J]. International Journal of Fatigue,2014,62:93-103. [3] LESIUK G,KUCHARSKI P,CORREIA J A F O,et al. Mixed mode (Ⅰ+Ⅱ) fatigue crack growth of long term operating bridge steel[J]. Procedia Engineering,2016,160:262-269. [4] WANG Qiang,LIU Xuesong,WANG Wei,et al. Mixed mode fatigue crack growth behavior of Ni-Cr-Mo-V high strength steel weldments[J]. International Journal of Fatigue,2017,102:79-91. [5] DEMIR O,IRIC S,AYHAN A O,et al. Investigation of mixed mode Ⅰ/Ⅱ fracture problem-Part 1 computational and experimental analyses[J]. Fracture and Structural Integrity,2016,10(35):330-339. [6] DEMIR O,AYHAN A O. Investigation of mixed mode Ⅰ/Ⅱ fracture problems:Part 2 evaluation and deve-lopment of mixed mode fracture[J]. Fracture and Structural Integrity,2016,10(35):340-349. [7] TANAKA K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics,1974,6(3):493-507. [8] RICHARD H A,BENITZ K. A loading device for the creation of mixed mode in fracture mechanics[J]. International Journal of Fracture,1983,22(2):55-58. [9] RICHARD H A. Fracture mechanical predictions for cracks with superimposed normal and shear loading[M]. Dusseldorf:VDI-Verlag,1985. [10] KIM T Y,KIM H K. Mixed-mode fatigue crack growth behavior of fully lower bainite steel[J]. Materials Science and Engineering:A,2013,580:322-329. [11] LESIUK G,KUCHARSKI P,CORREIA J A F O,et al. Mixed mode (Ⅰ+Ⅱ) fatigue crack growth in puddleiron[J]. Engineering Fracture Mechanics,2017,185:175-192. [12] JAMALI J,FAN Y,WOOD J T. The mixed-mode fracture behavior of epoxy by the compact tension shear test[J]. International Journal of Adhesion and Adhesives,2015,63:79-86. [13] JAMALI J,MOURAD A-HI,FAN Y,et al. Through thickness fracture behavior of unidirectional glass fibers epoxy composites under various in-plane loading using the CTS test[J]. Engineering Fracture Mechanics,2016,156:83-95. [14] 朱莉. 三维复合型脆性断裂行为的数值计算与实验研究[D]. 哈尔滨:哈尔滨工程大学,2012. ZHU Li. Numerical calculation and experimental inve-stigation on 3D mixed mode brittle fracture behavior[D]. Harbin:Harbin Engineering University,2012. [15] 杨超. Ⅰ/Ⅱ型复合加载下高强钢焊接接头的疲劳裂纹扩展行为[D].哈尔滨:哈尔滨工业大学,2015. YANG Chao. Fatigue crack propagation behavior of high strength steel welded joint under Ⅰ/Ⅱ mixed-mode loading[D]. Harbin:Harbin Institute of Technology,2015. [16] BANKS-SILLS L,ARCAN M,BORTMAN Y. A mixed mode fracture specimen for mode Ⅱ dominant defor-mation[J]. Engineering Fracture Mechanics,1984,20(1):145-157. [17] AMSTUTZ B E. Characterization of mixed-mode stable tearing in thin sheet 2024-T3 aluminum alloy[D]. South Carolina:University of South Carolina,1995. [18] AMSTUTZ B E,SUTTON M A,DAWICKE D S,et al. Effects of mixed mode Ⅰ/Ⅱ loading and grain orientation on crack initiation and stable tearing in 2024-T3 alumi-num[C]//Fatigue and Fracture Mechanics:27th Volume,ASTM International,1997. [19] CARLSSON L A,ADAMS D F,PIPES R B. Experi-mental characterization of advanced composite materials[M]. Boca Raton:CRC Press,2014. [20] CHEN Hui,CAI Lixun. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J]. Acta Materialia, 2016,121:181-189. [21] QI Shuang,CAI Lixun,BAO Chen,et al. Analytical theory for fatigue crack propagation rates of mixed-mode Ⅰ-Ⅱ cracks and its application[J]. International Journal of Fatigue,2019,119:150-159. [22] CHEN Hui,CAI Lixun. Unified elastoplastic model based on a strain energy equivalence principle[J]. Applied Mathematical Modelling,2017,52:664-671. [23] RICE J,ROSENGREN G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids,1968,16(1):1-12. |