Journal of Mechanical Engineering ›› 2020, Vol. 56 ›› Issue (21): 186-198.doi: 10.3901/JME.2020.21.186
Previous Articles Next Articles
LI Tianjian, DING Xiaohong, LI Haolin
Received:
2020-02-12
Revised:
2020-07-20
Online:
2020-11-05
Published:
2020-12-19
CLC Number:
LI Tianjian, DING Xiaohong, LI Haolin. Research Progress on Lightweight Design of Machine Tool Structure[J]. Journal of Mechanical Engineering, 2020, 56(21): 186-198.
[1] TLUSTY J. High speed machining[J]. Annals of the CIRP, 1993,42(2):733-738. [2] SCHELLEKENS P,ROSIELLE N. Design for precision:current status and trends[J]. Annals of the CIRP,1998,47(2):557-586. [3] HERRMANN C,DEWULF W,HAUSCHILD M,et al. Life cycle engineering of lightweight structures[J]. CIRP Annals,2018,67(2):651-672. [4] SCHLESINGER G. Die werkzeugmaschinen[M]. Berlin:Verlag von Julius Springer,1936. SCHLESINGER G. The machine tools[M]. Berlin:Publisher of Julius Springer,1936. [5] KOENIGSBERGER F. Berechnung,konstruktionsgrund-lagen und bauele-mente spanender werkzeugmaschinen[M]. Berlin:Spinger Verlag,1961. KOENIGSBERGER F. Calculation,basic design and components of cutting machine tools[M]. Berlin:Spinger Verlag,1961. [6] WECK M,BRECHER C. Werkzeugmaschinen 2-konstruktion und berechnung[M]. Berlin:Spinger Verlag,2007. WECK M,BRECHER C. Machine tools 2-design and calculation[M]. Berlin:Spinger Verlag,2007. [7] WECK M,ASBECK J,BÜSSENSCHÜTT A. Potentials of structural optimizations systems in product development. Annals of the CIRP,1996,45(1):165-168. [8] BENDSØE M,SIGMUND O. Topology optimization[M]. Berlin:Springer,2004. [9] ALTINTAS Y,BRECHER C,WECK M,et al. Virtual machine tool[J]. CIRP Annals-Manufacturing Technology,2005,54(2):651-675. [10] KADIR A,XU X,HAMMERLE E. Virtual machine tools and virtual machining-a technological review[J]. Robotics and Computer-Integrated Manufacturing,2011,27:494-508. [11] FORTUNATO A,ASCARI A. The virtual design of machining centers for hsm:towards new integrated tools[J]. Mechatronics,2013,23:264-278. [12] HUANG X,XIE Y. Evolutionary topology optimization of continuum structures-methods and applications[M]. New York:John Wiley& Sons,2010. [13] KROLL L,BLAU P,WABNER M,et al. Lightweight components for energy-efficient machine tools[J],CIRP Journal of Manufacturing Science and Technology,2011,4(2):148-160. [14] 张曙,张柄生.机床的总体配置和结构设计(上)[J].机械设计与制造工程,2016(3):1-10. ZHANG Shu,ZHANG Shansheng. Overall configuration and structural design of machine tools (part 1)[J]. Mechanical Design and Manufacturing Engineering,2016(3):1-10. [15] 米成秋,孙靖民.机床部件的有限元优化设计[J].哈尔滨工业大学学报,1982(2):72-84. MI Chengqiu,SUN Jingmin. Finite element optimization of machine tool components[J]. Journal of Harbin Institute of Technology,1982(2):72-84. [16] 米成秋,孙靖民.机床结构优化方法初探[J].哈尔滨工业大学学报,1983(3):71-78. MI Chengqiu,SUN Jingmin. Preliminary study on optimization method of machine tool structure[J]. Journal of Harbin Institute of Technology,1983(3):71-78. [17] WU B,YOUNG G,HUANG T. Application of a two-level optimization process to conceptual structural design of a machine tool[J]. International Journal of Machine Tools& Manufacture. 2000,40(6):783-794. [18] KOLAR P,SMOLIK J,SULITKA M,et al. An integrated approach to the development of machine tool structural parts,MATAR2012-12082,MM science journal[C]. 9th International Conference on Machine Tools,Automation,Technology and Robotics,12-14 September,2012,Prague,Czech Republic. [19] 郭垒,张辉,叶佩清,等.基于灵敏度分析的机床轻量化设计[J].清华大学学报,2011,51(6):846-850. GUO Lei,ZHANG Hui,YE Peiqing. Light weight design of a machine tool based on sensitivity analysis[J]. Journal Tsinghua University,2011,51(6):846-850. [20] 付俊涛.数控立式车床关键零件轻量化设计研究[D].长春:吉林大学,2011. FU Juntao. Research on mass-reduction design of key parts of cnc vertical lathe[D]. Changchun:Jilin University,2011. [21] 谭锋.高速卧式加工中心静动态性能分析与结构优化[D].成都:电子科技大学,2015. TAN Feng. The Static/dynamic performance analysis and structural optimization of the high-speed horizontal machining centers[D]. Chengdu:University of Electronic Science and Technology of China,2015. [22] 朱俊,韩江,许家凯,等.大型数控镗铣床基于灵敏度分析的轻量化设计[J].合肥工业大学学报,2016,39(6):721-724. ZHU Jun,HAN Jiang,XU Jiakai,et al. Lightweight design of large CNC boring and milling machine based on sensitivity analysis[J]. Journal of Hefei University of Technology,2016,39(6):721-724. [23] ZHANG L,MA L,WU D,et al. A novel integrated process-machine approach for designing customized milling machines[J]. International Journal of Advanced Manufacturing Technology,2019,104(1-4):245-260. [24] BENDSØE M. Optimal shape design as a material distribution problem[J]. Structural Optimization,1989,1:193-202. [25] WEULE H,FLEISCHER J,NEITHARDT W,et al. Structural optimization of machine tools including the static and dynamic workspace behavior[C]. The 36th CIRP-International Seminar on Manufacturing Systems,03-05 June,2003,Saarbruecken,Germany. [26] FLEISCHER J,MUNZINGER C,TRÖNDLE M. Simulation and optimization of complete mechanical behaviour of machine tools[J]. Production Engineering-Research and Development,2008,2:85-90. [27] MENZ P. Simulation and modelling of the design of forward feeds in lightweight construction[J]. Prace Naukowe Instytutu Technologii Maszyn I Automatyzacji Pllitechniki Wroclawskiej. 1998,69(31):130-140. [28] CHANGWON. A genetic algorithm based multi-step design optimization of a machine structure for minimum weight and compliance[C]//Proceedings of the SICE Annual Conference. 2005,476-481. [29] 陈叶林,丁晓红,郭春星,等.机床床身结构优化设计方法[J].机械设计,2010,27(8):65-68. CHEN Yelin,DING Xiaohong,GUO Chunxing,et al. Study on optimization design method of machine tool bed structure[J]. Mechanical Design,2010,27(8):65-68. [30] 饶柳生,侯亮,潘勇军.基于拓扑优化的机床立柱筋板改进[J].机械设计与研究,2010,26(1):87-91. RAO Liusheng,HOU Liang,PAN Yongjun. Improvement of the rib plate in machine tools column based on topology optimization[J]. Machine Design and Research,2010,26(1):87-91. [31] 赵东平.高速卧式加工中心立柱的轻量化设计[D].兰州:兰州理工大学,2012. ZHAO Dongping. Lightweight design of high-speed horizontal machining center of column[D]. Lanzhou:Lanzhou University of Technology,2012. [32] 张宁.基于TOSCA的精密卧式加工中心关键大件拓扑优化方法[D].天津:天津大学,2015. ZHANG Ning. The topological optimization method for the key components of precision horizontal machining center based on TOSCA[D]. Tianjin:Tianjin University,2015. [33] 李永强.高速卧式加工中心支承件结构分析及优化设计[D].兰州:兰州理工大学,2017. LI Yongqiang. Structural analysis and optimization design of the supporting part for machining center[D]. Lanzhou:Lanzhou University of Technology,2017. [34] STÖPPLERA G,DOUGLASB S. Adaptronic gantry machine tool with piezoelectric actuator for active error compensation of structural oscillations at the tool centre point[J]. Mechatronics,2008,18(8):426-433. [35] BESHARATI S R,DABBAGH V,AMINI H,et al. Multi-objective selection and structural optimization of the gantry in a gantry machine tool for improving static,dynamic,and weight and cost performance[J]. Concurrent Engineering:Research and Applications,2016,24(1):83-93. [36] SCHLEINKOFER U,LAUFER F,ZIMMERMANN M,et al. Resource-efficient manufacturing systems through lightweight construction by using a combined development approach[J]. Procedia CIRP,2018,72:856-861. [37] 伍建国,陈新,毛海军,等.内圆磨床床身设计参数的灵敏度分析及动态设计[J].南京航空航天大学学报,2002,34(6):545-546. WU Jianguo,CHEN Xin,MAO Haijun,et al. Sensitivity analysis and dynamic design of design parameters for internal grinder bed[J]. Journal of Nanjing University of Aeronautics&Astronautics,2002,34(6):545-546. [38] 谢志坤,路平,史科科,等.轻量化技术在机床设计中的应用[J].制造技术与机床,2012(12):56-59. XIE Zhikun,LU Ping,SHI Keke,et al. The application of the lightweight technology in machine tool design field[J]. Manufacturing Technology and Machine Tool,2012(12):56-59. [39] 杨常青.基于多目标优化的大型加工中心结构优化设计[D].天津:天津理工大学,2013. YANG Changqing. The structural optimization and design of the large machining center based on multi-objective optimization[D]. Tianjin:Tianjin University of Technology,2013. [40] 牛兴.双牛头电火花成型机床的动静态特性分析[D].广州:广东工业大学,2014 NIU Xing. The dynamic and static characteristics analysis of double tauren type EDM machine[D]. Guangzhou:Guangdong University of Technology. 2014. [41] 张森.基于灵敏度和有限元分析的龙门加工中心横梁结构轻量化设计[D].南通:南通大学,2014. ZHANG Sen. Light weight design of gantry machining center crossbeam based on sensitivity and finite element analysis[D]. Nantong:Nantong University,2014. [42] 刘成颖,谭锋,王立平.基于拓扑优化与筋板布局的立柱轻量化设计[J].组合机床与自动化加工技术,2015(4):1-4. LIU Chengying,TAN Feng,WANG Liping. Lightweight design of column structure based on topology optimization and reinforcing rib layout[J]. Modular Machine Tool& Automatic Manufacturing Technique,2015(4):1-4. [43] 刘成颖,谭锋,王立平,等.面向机床整机动态性能的立柱结构优化设计研究[J].机械工程学报,2016,52(3):161-168. LIU Chengying,TAN Feng,WANG Liping,et al. Research on optimization of colume structure design for dynamic performance of machine tool[J]. Journal of Mechanical Engineering,2016,52(3):161-168. [44] 贾成阁.小型龙门加工中心结构优化设计研究[D].长春:长春工业大学,2017. JIA Chengge. Research on structural optimization design of small gantry machining center[D]. Changchun:Changchun University of Technology,2017. [45] JI Qianqian,LI Congbo,ZHU Daoguang,et al. Structural design optimization of moving component in CNC machine tool for energy saving[J]. Journal of Cleaner Production,2020,246:118976. [46] 王德伦,申会鹏,孙元,等.复杂零件结构设计的概念单元方法[J].机械工程学报,2016,52(7):152-163. WANG Delun,SHEN Huipeng,SUN Yuan,et al. A novels approach for conceptual structural design of complex machine elements[J]. Journal of Mechanical Engineering,2016,52(7):152-163. [47] 马超.机床结构设计方法研究及在立柱设计中的应用[D].大连:大连理工大学,2010. MA Chao. Research on machine tool structure design method and application in column design[D]. Dalian:Dalian University of Technology,2010. [48] 董惠敏,丁尚,王海云,等.床鞍的轻量化设计数据库研究[J].组合机床与自动化加工技术,2014(3):33-36. DONG Huimin,DING Shang,WANG Haiyun,et al. Research on lightweight design database of bed saddle[J]. Modular Machine Tool and automatic Processing Technology,2014(3):33-36. [49] 张龙.车床轻量化设计数据库系统研究[D].大连:大连理工大学,2015. ZHANG Long. Study on the database system of lathe structural parts lightweight design[D]. Dalian:Dalian University of Technology,2015. [50] 马雅丽,张霄,申会鹏,等.机床螺栓联接结构的静动态优化设计[J].组合机床与自动化加工技术,2016(2):1-4. MA Yali,ZHANG Xiao,SHEN Huipeng,et al. Static and dynamic optimization design bolted joints structure of machine tool[J]. Modular Machine Tool& Automatic Manufacturing Technique,2016(2):1-4. [51] 赵二盡.车削中心静动热特性分析及床鞍结构优化设计[D].大连:大连理工大学,2010. ZHAO Erjing. Analysis of static and dynamic thermal characteristics of turning center and optimization design of saddle structure[D]. Dalian:Dalian University of Technology,2010. [52] 申会鹏.机床运动链及其零件的结构设计方法研究[D].大连:大连理工大学,2017. SHEN Huipeng. Research on structural design method of machine tool kinematic chain and its parts[D]. Dalian:Dalian University of Technology,2017. [53] HUANG T,DONG C,LIU H,et al. A simple and visually orientated approach for type synthesis of overconstrained 1T2R parallel mechanisms[J]. Robotica,2019,37(7):1161-1173. [54] 罗仕鉴,张宇飞,边泽,等.产品外形仿生设计研究现状与进展[J].机械工程学报,2018,54(21):138-155. LUO Shijian,ZHANG Yufei,BIAN Ze,et al. Status and progress of product shape bionic design[J]. Journal of Mechanical Engineering,2018,54(21):138-155. [55] ZHAO L,CHEN W,MA J,et al. Structural bionic design and experimental verification of a machine tool column[J]. Journal of Bionic Engineering,2008,5(Suppl.):46-52. [56] ZHAO L,MA J,WANG T,XING D. Lightweight design of mechanical structures based on structural bionic methodology[J]. Journal of Bionic Engineering,2010,7:S224-231. [57] ZHAO L,MA J,CHEN W,GUO H. Lightweight design and verification of gantry machining center crossbeam based on structural bionics[J]. Journal of Bionic Engineering,2011,8:201-206. [58] ZHAO L,WANG T,GUO H,et al. Structural bionic design of machine tool structures[J]. CADDM,2011; 21:45-50. [59] GAO H,SUN J,CHEN W,et al. Structural bionic design for a machine tool column based on leaf veins[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2017,232(16),2764-2773. [60] LIU Shihao,LIN Mao. Bionic optimization design for a CNC turntable based on thermal-mechanical coupling effect[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42:No253. [61] LI Baotong,HONG Jun,LIU Zhifeng. Stiffness design of machine tool structures by a biologically inspired topology optimization method[J]. International Journal of Machine Tools and Manufacture,2014,84:33-44. [62] DING Xiaohong,YAMAZAKI K. Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design)[J]. Structural and Multidisciplinary Optimization,2004,26(1-2):99-110. [63] DING Xiaohong,YAMAZAKI K. Adaptive growth technique of stiffener layout pattern for plate and shell structures to achieve minimum compliance[J]. Engineering Optimization,2005,37(3):259-276. [64] DING Xiaohong,LI Guojie,YAMAZAKI K. Topology design optimization based on biotic branch net[J]. Chinese Journal of Mechanical Engineering,2005,18(2):187-191. [65] 丁晓红,李国杰,蔡戈坚,等.薄板结构的加强筋自适应成长设计法[J].中国机械工程,2005,16(12):1057-1060. DING Xiaohong,LI Guojie,CAI Gejian,et al. Adaptive growth method of rib distribution for thin plate structure[J]. China Mechanical Engineering,2005,16(12):1057-1060. [66] 丁晓红,林建中,山崎光悦.利用植物根系形态形成机理的加筋薄壳结构拓扑优化设计[J].机械工程学报,2008,44(4):201-205. DING Xiaohong,LIN jianzhong,YAMAZAKI K. Topology design optimization of stiffened thin-wall shell structures based on growth mechanism of root system[J]. Journal of Mechanical Engineering,2008,44(4):201-205. [67] 丁晓红,程莉.基于SKO方法的满应力结构拓扑优化设计[J].中国机械工程,2009,20(15):1765-1770. DING Xiaohong,CHENG Li. Topology optimization design of full stress structure based on SKO method[J].China Mechanical Engineering,2009,20(15):1765-1770. [68] 丁晓红,郭春星,季学荣.基于自适应成长原理的板壳结构加强筋分布设计技术[J].工程设计学报,2012,19(2):118-122. DING Xiaohong,GUO Chunxing,JI Xuerong. Stiffener layout design of plate structures based on adaptive growth mechanism[J]. Chinese Journal of Engineering Design,2012,19(2):118-122. [69] 丁晓红,李国杰.箱型支撑结构加筋板布局设计方法研究[J].中国机械工程,2012,23(4):449-453. DING Xiaohong,LI Guojie. Layout design optimization of stiffener plates inside housing structures[J]. China Mechanical Engineering,2012,23(4):449-453. [70] DING Xiaohong,JI Xuerong,MA Man,et al. Key techniques and applications of adaptive growth method for stiffener layout design of plates and shells[J]. Chinese Journal of Mechanical Engineering,2013,26(6):1138-1148 [71] 季金,丁晓红,熊敏.基于最优准则法的板壳结构加筋自适应成长技术[J].机械工程学报,2014,51(11):162-169. JI Jin,DING Xiaohong,XIONG Ming. Adaptive growth technique of stiffener layout design for plate/shell structures based on optimality criterion[J]. Journal of Mechanical Engineering,2014,51(11):162-169. [72] JI Jin,DING Xiaohong. Stiffener Layout optimization of inlet structure for electrostatic precipitator by improved adaptive growth method[J]. Advances in Mechanical Engineering,2014,11:1-8. [73] JI Jin,DING Xiaohong,XIONG Ming. Optimal stiffener layout of plate shell structures by bionic growth method[J]. Computers and Structures,2014,135(135):88-99. [74] DONG Xiaohu,DING Xiaohong,XIONG Min. Optimal layout of internal stiffeners for three-dimensional box structures based on natural branching phenomena[J]. Engineering Optimization,2019,51(4):590-607. [75] ZHANG Heng,DING Xiaohong,DONG Xiaohu,et al. Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena[J]. Structural and Multidisciplinary Optimization,2018,57(6):2323-2338. [76] SHEN Lei,DING Xiaohu,LI Tianjian,et al. Structural dynamic design optimization and experimental verification of a machine tool[J]. International Journal of Advanced Manufacturing Technology,2019,104:3773-3786. [77] DONG Xiaohu,DING Xiaohong,LI Guojie,et al. Stiffener layout optimization of plate and shell structures for buckling problem by adaptive growth method[J]. Structural and Multidisciplinary Optimization,2020,61:301-318. [78] WANG Pengjia,GONG Yadong,XIE Hualong,et al. Applying CBR to machine tool product configuration design oriented to customer requirements[J]. Chinese Journal of Mechanical Engineering,2017,31(1):60-76. [79] HUGO I. Medellin-castillo and jorge zaragoza-siqueiros. design and manufacturing strategies for fused deposition modelling in additive manufacturing:A review[J]. Chinese Journal of Mechanical Engineering,2019,32(1):53. [80] PFAFF A,BIERDEL M,HOSCHKE K,et al. Resource analysis model and validation for selective laser melting,constituting the potential of lightweight design for material efficiency[J]. Sustainable Production and Consumption,2020,21:182-191. [81] CHEN Guoda,SUN Yazhou,ZHANG Feihu,et al. Dynamic accuracy design method of ultra-precision machine tool[J]. Chinese Journal of Mechanical Engineering,2018,31(1):8. [82] YE Wei,LI Qinchuan. Type synthesis of lower mobility parallel mechanisms:A review[J]. Chinese Journal of Mechanical Engineering,2019,32(1):38. |
[1] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[2] | ZHANG Yusen, CHEN Lei, LIU Shengjie, HU Junhua, ZHANG Qifei, CUI Mingliang, HU Jianliang, JIN Miao. Mechanism for the Macrostructure Coarse Grain of TB6 Titanium Alloy Die Forging and Its Prediction [J]. Journal of Mechanical Engineering, 2024, 60(8): 121-131. |
[3] | YANG Yang, WANG Zekui, CHEN Chen, MA Hua, YANG Zhinan, ZHANG Fucheng. Effect of Ni and Cu Alloying on Microstructure and Mechanical Properties of Fe-Mn-Al-C Austenitic Lightweight Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 154-164. |
[4] | REN Zhiying, HUANG Zihao, FANG Rongzheng, WANG Qinwei, MO Jiliang, Qin Hongling. Study on Thermomechanical Properties of Metal-rubber Disordered Lattice Interpenetrating Structures [J]. Journal of Mechanical Engineering, 2024, 60(8): 165-175. |
[5] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[6] | GU Yufen, LU Na, SHI Yu, SUN Qingling. Microstructure Characteristics of 16MnDR Steel Welded Joint and Its Corrosion Behavior in Hydrofluoric Acid Environment [J]. Journal of Mechanical Engineering, 2024, 60(8): 196-203. |
[7] | CHANG Boyan, HAN Fangxiao, ZHOU Yang, JIN Guoguang. Impact Dynamics of High-speed Metamorphic Mechanism for Comber [J]. Journal of Mechanical Engineering, 2024, 60(7): 54-65. |
[8] | GAO Nan, WANG Shiyu, XIA Chunhua, WEI Zhenhang. Study on Natural Frequency Splitting of a Ring-shaped Periodic Structure with Variable Cross-section Features [J]. Journal of Mechanical Engineering, 2024, 60(7): 114-123. |
[9] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[10] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[11] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[12] | WANG Junjiu, LIU Jinyu, HOU Xiujuan, QI Zhenguo, LI Zhimin, LIU Tao. Hybrid Mechanistic and Data-driven Modeling Method of Compliant Assembly Variation Prediction for Train Body [J]. Journal of Mechanical Engineering, 2024, 60(6): 177-186. |
[13] | HAN Jing, ZHANG Zheng, SONG Yuanming, SUN Qisheng, LIU Zhiyuan, SUN Jiapeng, CAO Chao, ZHAO Jiyun. Preparation, Microstructure and Properties of High-performance Gradient Nanostructured Pure Ti Plate by USSR [J]. Journal of Mechanical Engineering, 2024, 60(6): 227-235. |
[14] | ZHOU Suxia, BA Xinyue, WANG Junyan, LI Guang, QU Zhi. Research on Heat Dissipation of Bionic Brake Disc of Ginkgo Leaf Veins for High-speed Trains [J]. Journal of Mechanical Engineering, 2024, 60(6): 354-362. |
[15] | ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots [J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||