[1] KONH B, HONARVAR M, HUTAPEA P. Design optimization study of a shape memory alloy active needle for biomedical applications[J]. Medical Engineering and Physics, 2015, 37(5):469-477. [2] DONADON M, FARIA A. Aeroelastic behavior of com-posite laminated shells with embedded SMA wires under supersonic flow[J]. Aerospace Science and Technology, 2016, 52:157-166. [3] 康泽天, 周博, 薛世峰. 功能梯度形状记忆合金复合梁的力学行为[J]. 复合材料学报, 2019, 36(8):1901-1910. KANG Zetian, ZHOU Bo, XUE Shifeng. Mechanical behaviors of functionally graded shape memory alloy composite beam[J]. Acta Materiae Composite Sinica, 2019, 36(8):1901-1910. [4] ZHOU Bo. A macroscopic constitutive model of shape memory alloy considering plasticity[J]. Mechanics of Materials, 2012, 48:71-81. [5] CISSE C, ZAKI W, ZINED T B. A review of constitutive models and modeling techniques for shape memory alloys[J]. International Journal of Plasticy, 2016, 76:244-284. [6] XU R, BOUBY C, ZAHROUNI H, et al. 3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method[J]. Composite Structures, 2018, 200:408-419. [7] VIET N V, ZAKI W. Analytical investigation of the behavior of concrete beams reinforced with multiple circular superelastic shape memory alloy bars[J]. Composite Structures, 2019, 210:958-970. [8] MAJI A K. Smart prestressing with shape-memory alloy[J]. Journal of Engineering Mechanics, 1998, 124(10):1121-1128. [9] FANG Cheng, ZHENG Yue, CHEN Junbai, et al. Superelastic NiTi SMA cables:Thermal-mechanical behavior, hysteretic modelling and seismic application[J]. Engineering Structures, 2019, 183:533-549. [10] BELTRAN J F, CRUZ C, HERRERA R, et al. Shape memory alloy CuAlBe strands subjected to cyclic axial loads[J]. Engineering Structures, 2011, 33(10):2910-2918. [11] REEDLUNN B, DALY S, SHAW J. Superelastic shape memory alloy cables:Part I-Isothermal tension experi-ments[J]. International Journal of Solids and Structures, 2013, 50(20-21):3009-3026. [12] REEDLUNN B, DALY S, SHAW J. Superelastic shape memory alloy cables:Part Ⅱ-Subcomponent isothermal responses[J]. International Journal of Solids and Str-uctures, 2013, 50(20-21):3027-3044. [13] OZBULUT O, DAGHASH S, SHERIF M. Shape memory alloy cables for structural applications[J]. Journal of Materials in Civil Engineering, 2016, 28(4):04015176. [14] SHERIF M, OZBULUT O. Tensile and superelastic fatigue characterization of NiTi shape memory cables[J]. Smart Materials and Structures, 2018, 27(1):015007. [15] MAS B, BIGGS D, VIEITO I, et al. Superelastic shape memory alloy cables for reinforced concrete appli-cations[J]. Construction and Building Materials, 2017, 148:307-320. [16] CARBONI B, LACARBONARA W, AURICCHIO F. Hysteresis of multiconfiguration assemblies of nitinol and steel strands:Experiments and phenomenological identi-fication[J]. Journal of Engineering Mechanics, 2014, 141(3):04014135. [17] ZHENG Yue, DONG You, LI Yaohan. Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings[J]. Cons-truction and Building Materials, 2018, 158:389-400. [18] BOYD J, LAGOUDAS D. A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy[J]. International Journal of Plasticy, 1996, 12(6):805-842. [19] QIDWAI M, LAGOUDAS D. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms[J]. International Journal for Numerical Methods in Engineering, 2000, 47:1123-1168. [20] TABESH M, LIU B, BOYD J, et al. Analytical solution for the pseudoelastic response of a shape memory alloy thick-walled cylinder under internal pressure[J]. Smart Materials and Structures, 2013, 22(9):223-236. [21] 康泽天, 周博, 薛世峰. 形状记忆合金管接头热机耦合行为的有限元数值模拟[J]. 机械工程学报, 2018, 54(18):68-75. KANG Zetian, ZHOU Bo, XUE Shifeng. Finite element numerical simulation on thermo-mechanical coupling behavior in shape memory alloy pipe connec-tion[J]. Journal of Mechanical Engineering, 2018, 54(18):68-75. [22] BRINSON L C. One-dimension constitutive behavior of shape memory alloys:Thermomechanical derivation with non-constant material functions and martensite internal variable[J]. Journal of Intelligent Material Systems and Structures, 1993, 4:229-242. [23] 周博, 刘彦菊, 冷劲松, 等. 形状记忆合金的宏观力学本构模型[J]. 中国科学, 2009, 39(7):998-1006. ZHOU Bo, LIU Yanju, LENG Jinsong, et al. A macro-mechanical constitutive model of shape memory alloys[J]. Science in China, 2009, 39(7):998-1006. |