[1] 贾旭,常炜,黄俊,等. 南海某海底管道腐蚀原因分析[J]. 全面腐蚀控制,2013,27(8):33-37. JIA Xu,CHANG Wei,HUANG Jun,et al. Corrosion reason analysis of one subsea pipeline in South China Sea[J]. Total Corrosion Control,2013,27(8):33-37. [2] WINTLE J B,PARGETERR J. Technical failure investigation of welded structures(or how to get the most out offailures)[J]. Engineering Failure Analysis,2005,12(6):1027-1037. [3] 方娜,陈国明,朱红卫. 海底管道泄漏事故统计分析[J]. 油气储运,2014,33(1):99-103. FANG Na,CHEN Guoming,ZHU Hongwei. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil& Gas Storage and Transportation,2014,33(1):99-103. [4] 王浩. X100管线钢氢脆敏感性研究[D]. 天津:天津大学,2017. WANG Hao. Study on the hydrogen embrittlement susceptibility of X100 pipeline steel[D]. Tianjin:Tianjin University,2017. [5] CORBETT K T,BOWEN R R,PETERSEN C W. High strength steel pipeline economics[J]. International Journal of Offshore and Polar Engineering,2004,14(1):75-79. [6] RIVERA P C,RAMUNNI V P,BRUZZONI P. Hydrogen trapping in an API 5L X60 steel[J]. Corrosion Science,2012,54:106-118. [7] ESKANDARI M,SZPUNAR J A. Evolution of the microstructure and texture of X70 pipeline steel during cold-rolling and annealing treatments[J]. Materials and Design,2016,90:618-627. [8] WANG Xu,XIAO Furen,FU Yanhong. Material development for grade X80 heavy-wall hot induction bends[J]. Materials Science and Engineering:A,2011,530:539-547. [9] CHATZIDOUROS E V,PAPAZOGLOU V J,TSIOURVA T E,et al. Hydrogen effect on fracture toughness of pipeline steel welds,with in situ hydrogen charging[J]. International Journal of Hydrogen Energy,2011,36(19):12626-12643. [10] CIALONE H J,HOLBROOK J H. Sensitivity of steels to degradation in gaseous hydrogen[J]. Hydrogen Embrittlement:prevention and control,ASTM STP,1988,962:134-152. [11] BRIOTTET L,MORO I. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations[J]. In International Journal of Hydrogen Energy,2012,37(22):17616-17623. [12] ZHANG Z,WU X Q,TAN J B,In-situ monitoring of stress corrosion cracking of 304 stainless steel in high-temperature water by analyzing acoustic emission waveform[J]. Corrosion Science,2019,146:90-98. [13] LI S C,YU Q,PU J J,et al. Study on mechanical properties and acoustic emission characteristics of metallic materials under the action of combined tension and torsion[J]. Engineering Fracture Mechanics,2018,200:451-464. [14] ZHOU P S,WANG B,WANG L,et al.,Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel[J]. Materials Science and Engineering:A,2018. 722:112-121. [15] BAI P P,ZHENG S Q,ZHAO H,et al. Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment[J]. Corrosion Science,2014,87:397-406. [16] AL-MANSOURM,ALFANTAZIAM,EL-BOUJDAINI M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Materials & Design,2009,30(10):4088-4094. [17] CONTRERAS A,HERNANDEZ S L,OROZCO-CRUZ R,el al. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution[J]. Materials & Design,2012,35:281-289. [18] ROY H,RAY K. Acoustic emission during monotonic and cyclic fracture toughness tests of 304LN weldments[J]. International Journal of Pressure Vessels and Piping,2010,87(10):543-549. [19] MA H C,DU C W,LIU Y Z,et al. Effect of SO2 content on SCC behavior of E690 high-strength steel in SO2-polluted marine atmosphere[J]. Ocean Engineering,2018,164:256-262. [20] ZHAO T L,LIU Z Y,DU C W,et al.,Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater. Materials Science and Engineering:A,2017,708:181-192. |