[1] DICKINSON M H,FARLEY C T,FULL R J,et al. How animals move:An integrative view[J]. Science,2000,288(5463):100-106.
[2] RUS D,TOLLEY M T. Design,fabrication and control of soft robots[J]. Nature,2015,521(7553):467-475.
[3] DEIMEL R,BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. Sage Publications,Inc., 2016,35(1):161-185.
[4] TERRYN S,BRANCART J,LEFEBER D,et al. Self-healing soft pneumatic robots[J]. Science Robotics,2017,2(9):4268.
[5] NASAB A M,SABZEHZAR A,TATARI M,et al. A soft gripper with rigidity tunable elastomer strips as ligaments[J]. Soft Robotics,2017,4(4):411-420.
[6] FENG N,SHI Q,WANG H,et al. A soft robotic hand:design,analysis,control,and experiment[J]. International Journal of Advanced Manufacturing Technology,2018,97(1-4):319-333.
[7] MARCHESE A D,KATZSCHMANN R K,DANIELA R. A recipe for soft fluidic elastomer robots[J]. Soft Robotics,2015,2(1):7-25.
[8] ILIEVSKI F,MAZZEO A D,SHEPHERD R F,et al. Soft robotics for chemists[J]. Angewandte Chemie,2011,50(8):1890-1895.
[9] HAO Y,GONG Z,XIE Z,et al. Universal soft pneumatic robotic gripper with variable effective length[C]//35th Chinese Control Conference,July 27-29,2016,Chengdu,China:IEEE,2016:6109-6114.
[10] DUDUTA M,WOOD R J,CLARKE D R. Multilayer dielectric elastomers for fast,programmable actuation without prestretch[J]. Advanced Materials,2016,28(36):8058-8063.
[11] MARETTE A,POULIN A,BESSE N,et al. Flexible zinc-tin oxide thin film transistors operating at 1 kv for integrated switching of dielectric elastomer actuators arrays[J]. Advanced Materials,2017,29(30):1700880.
[12] MUST I,KAASIK F,PÕLDSALU I,et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials,2015,17(1):84-94.
[13] SHE Y,LI C,CLEARY J,et al. Design and fabrication of a soft robotic hand with embedded actuators and sensors[J]. Journal of Mechanisms and Robotics,2015,7(2):021007.
[14] SHE Y,CHEN J,SHI H,et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics. 2016,3(2):71-82.
[15] BEHL M,KRATZ K,ZOTZMANN J,et al. Reversible bidirectional shape-memory polymers[J]. Advanced Materials,2013,25(32):4466-4469.
[16] GE Q,SAKHAEI A H,LEE H,et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports,2016,6(31110):1-11.
[17] ZHAO L,HUANG J,ZHANG Y,et al. Programmable and bidirectional bending of soft actuators based on janus structure with sticky tough paa-clay hydrogel[J]. Acs Appl. Mater Interfaces,2017,9(13):11866-11873.
[18] LI X,CAI X,GAO Y,et al. Reversible bidirectional bending of hydrogel-based bilayer actuators[J]. Journal of Materials Chemistry B,2017,5(15):10.1039/C7TB00426E.
[19] TACCOLA S,GRECO F,SINIBALDI E,et al. Toward a new generation of electrically controllable hygromorphic soft actuators[J]. Advanced Materials,2015,27(10):1668-1675.
[20] WANI O M,ZENG H,PRⅡMAGI A. A light-driven artificial flytrap[J]. Nature Communications,2017,8:15546-15552.
[21] ZOLFAGHARIAN A,KOUZANI A,NASRINAS-RABADI B,et al. 3D Printing of a Photothermal Self-folding Actuator[J]. KnE Engineering,2017,2:15-22.
[22] PACCHIEROTTI C,ONGARO F,BRINK F V D,et al. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance[J]. IEEE Transactions on Automation Science and Engineering,2017(99):1-17.
[23] HU Y,LIU J,CHANG L,et al. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite[J]. Advanced Functional Materials,2017,27(44):1704388.
[24] DILLER E,SITTI M. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers[J]. Advanced Functional Materials,2014,24(28):4377-4377.
[25] SCHMAUCH M M,MISHRA S R,EVANS B A,et al. Chained iron microparticles for directionally controlled actuation of soft robots[J]. Acs Applied Materials and Interfaces,2017,9(13):11895-11901.
[26] WEI Y,CHEN Y,REN T,et al. A novel,variable stiffness robotic gripper based on integrated soft actuating and particle jamming[J]. Soft Robot,2016,3(3):134-143.
[27] MAJIDI C,WOOD R J. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field[J]. Applied Physics Letters,2010,97(16):1841-1846.
[28] SADEGHI A,BECCAI L,MAZZOLAI B. Innovative soft robots based on electro-rheological fluids[C]//Ieee/rsj International Conference on Intelligent Robots and Systems. IEEE,2012:4237-4242.
[29] YANG Y,CHEN Y,LI Y,et al. Novel variable-stiffness robotic fingers with built-in position feedback[J]. Soft Robot,2017,4(4):338-352.
[30] KAZEM N,HELLEBREKERS T,MAJIDI C. Soft multifunctional composites and emulsions with liquid metals[J]. Advanced Materials,2017,29(27):1.
[31] MOSADEGH B,POLYGERINOS P,KEPLINGER C,et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials,2014,24(15):2109-2109.
[32] POLYGERINOS P,WANG Z,OVERVELDE J T B,et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics,2015,31(3):778-789.
[33] WANG Run,JIANG Nan,SU Jian,et al. A bi-sheath fiber sensor for giant tensile and torsional displacements[J]. Adv. Funct. Mater.,2017,27(35):1702134.
[34] LIU Zhunfeng,FANG Shaoli,FRANCISO A M,et al. Hierarchically buckled sheath-core fibers for superelastic electronics,sensors,and muscles[J]. Science,2015,349:400
[35] HAN Libiao,DING Jianning,WANG Shuai, et al. Multi-functional stretchable and flexible sensor array to determine the location,shape,and pressure:Application in a smart robot[J]. Science China (Technological Sciences),2018,61(8):1137-1143. |