Journal of Mechanical Engineering ›› 2019, Vol. 55 ›› Issue (3): 1-17.doi: 10.3901/JME.2019.03.001
HAO Daxian, WANG Wei, WANG Qilong, YUN Chao
Received:
2017-12-27
Revised:
2018-11-13
Online:
2019-02-05
Published:
2019-02-05
CLC Number:
HAO Daxian, WANG Wei, WANG Qilong, YUN Chao. Applications and Development Trend of Robotics in Composite Material Process[J]. Journal of Mechanical Engineering, 2019, 55(3): 1-17.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 师昌绪. 材料大词典[M]. 北京:化学工业出版社,1994. SHI Changxu. Materials comprehesive dictionary[M]. Beijing:Chemical Industry Press,1994. [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007,24(1):1-12. DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12. [3] ROBERT I M. Advanced composite structures research in Australia[J]. Composite Structu. Res.,2002,57:3-10. [4] 王绍凯,马绪强,李敏,等. 飞行器结构用复合材料四大核心技术及发展[J]. 玻璃钢/复合材料,2014(9):76-84. WANG Shaokai,MA Xuqiang,LI Min,et al. Four key technologies of structural composites for aircraft applications and its development[J]. Fiber Reinforced Plastics/Composites,2014(9):76-84. [5] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报,2008,29(3):605-610. CHEN Shaojie. Composite technology and large aircraft[J]. Acta Aeronautica ET Astronautica Sinica,2008,29(3):605-610. [6] 陈绍杰. 复合材料与B7E7"梦想"飞机[J]. 航空制造技术,2005(1):34-37. CHEN Shaojie. Composite materials and B7E7 "dream" aircraft[J]. Aeronautical Manufacturing Technology,2005(1):34-37. [7] 陈祥宝,张宝艳,邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展,2009,28(6):2-12. CHEN Xiangbao,ZHANG Baoyan,XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12. [8] KLOCKE F,NOVOVIC D,ELFIZY A,et al. Abrasive machining of advanced aerospace alloys and composites[J]. CIRP Annals-Manufacturing Technology,2015,64(2):581-604. [9] 佚名. 中国商飞公司市场预测年报(摘要) (2015-2034)[J]. 大飞机,2015(5):52-57. ANONYMITY. China business flight company's market forecast annual report (summary) (2015-2034)[J]. Large Aircraft,2015(5):52-57. [10] 张建宝,肖军,文立伟,等. 自动铺带技术研究进展[J]. 材料工程,2010(7):87-91. ZHANG Jianbao,XIAO Jun,WEN Liwei,et al. Research progress of automated tape-laying technology[J]. Journal of Materials Engineering,2010(7):87-91. [11] 范玉青,张丽华. 超大型复合材料机体部件应用技术的新进展-飞机制造技术的新跨越[J]. 航空学报,2009,30(3):534-543. FAN Yuqing,ZHANG Lihua. New development of extra large composite aircraft components application technology-advance of aircraft manufacture technology[J]. Acta Aeronautica ET Astronautica Sinica,2009,30(3):534-543. [12] FRANK C. A filament-wound structure technology overview[J]. Materials Chemistry & Physics,1995,42(2):96-100. [13] LUKASZEWICZ H J A,WARD C,POTTER K D. The engineering aspects of automated prepreg layup:History,present and future[J]. Composites Part B Engineering,2012,43(3):997-1009. [14] JOHN E. Overview of filament winding[J]. SAMPE Journal,2001,37(1):7-11. [15] SLADE H. The role of carbon fiber in aerospace composite processing[J]. SAMPE Journal,2001,37(2):5-9. [16] KELLI A,CORONA B,EVERETT B,et al. Filament winding of the navy composite storage module[J]. SAMPE Journal,2001,37(1):56-62. [17] 周燚. 复合材料自动铺丝CAD技术研究[D]. 南京:南京航空航天大学,2006. ZHOU Yan. Research on cad of automatic composite fiber placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2006. [18] 肖军,李勇,李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术,2008(1):50-53. XIAO Jun,LI Yong,LI Jianlong. Application of automatic laying technique in the manufacturing of composite structure parts of large aircraft[J]. Aeronautical Manufacturing Technology,2008(1):50-53. [19] LUKASZEWICZ H J A,WARD C,POTTER K D. The engineering aspects of automated prepreg layup:History,present and future[J]. Composites Part B,2012,43(3):997-1009. [20] SHARP R,HOLMES S,WOODALL C. Material selection/fabrication issues for thermoplastic fiber placement[J]. Journal of Thermoplastic Composite Materials,1995,8(1):2-14. [21] RUDBERG T,FLYNN R,NIELSON J. Production implementation of multiple machine,high speed fiber placement for large structures[J]. SAE International Journal of Aerospace,2010,3(1):216-223. [22] 石林. 自动铺丝束在航空工业中的应用现状[J]. 航空工程与维修,1997(9):11-13. SHI Lin. Application status of automatic tow in aeronautical industry[J]. Aviation Maintenance & Engineering,1997(9):11-13 [23] 邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2010. SHAO Zhongxi. Research on key technology of fiber placement machine[D]. Harbin:Harbin Institute of Technology,2010. [24] WANG X,JIANG M,ZHOU Z,et al. 3D printing of polymer matrix composites:A review and prospective[J]. Composites Part B Engineering,2017,110:442-458. [25] CASTLES F,ISAKOV D,LUI A,et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports,2016,6:22714. [26] COMPTON B G,LEWIS J A. 3D printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):6043-6043(1). [27] APPLEYARD D. Powering up on powder technology[J]. Metal Powder Report,2015,70(6):285-289. [28] WATKINS T R,BILHEUX H Z,AN K,et al. Neutron characterization for additive manufacturing[J]. Advanced Materials & Processes,2013,171(3):23-27. [29] MISRA A K,GRADY J E,CARTER R. Additive manufacturing of aerospace propulsion components[J]. In Additive Manufacturing for Small Manufacturers,2015,21:1. [30] Objects impossible.[EB/OL].[2013-06-09]. http://impossible-objects.com/. [31] RAYAT M S,GILL S S,SINGH R,et al. Fabrication and machining of ceramic composites - A review on current scenario[J]. Materials & Manufacturing Processes,2017,32(13):1451-1474. [32] NICHOLLS C J,BOSWELL B,DAVIES I J,et al. Review of machining metal matrix composites[J]. International Journal of Advanced Manufacturing Technology,2017,90(9-12):2429-2441. [33] MADHU S,BALASUBRAMANIAN M. Influence of nozzle design and process parameters on surface roughness of CFRP machined by abrasive jet[J]. Materials & Manufacturing Processes,2016,11:1. [34] PERNER M,ALGERMISSEN S,KEIMER R,et al. Avoiding defects in manufacturing processes:A review for automated CFRP production[J]. Robotics and Computer-Integrated Manufacturing,2016,38(C):82-92. [35] SINGH A P,SHARMA M,SINGH I. A review of modeling and control during drilling of fiber reinforced plastic composites[J]. Composites Part B Engineering,2013,47(3):118-125. [36] LIU D F,TANG Y J,CONG W L. A review of mechanical drilling for composite laminates[J]. Composite Structures,2012,94(4):1265-1279. [37] NAGARAJA S,SHAHABAZ S M. A review on finite element method for machining of composite materials[J]. Composite Structures,2017,176:790-802. [38] DANDEKAR C R,SHIN Y C. Modeling of machining of composite materials:A review[J]. International Journal of Machine Tools & Manufacture,2012,57(2):102-121. [39] CLAUDE C,戴棣. 机器人技术在复合材料产业中发挥重要作用[J]. 航空制造技术,2008(15):68-68. CLAUDE C,DAI Di. Robotics makes its mark in the composite industry[J]. Aeronautical Manufacturing Technology,2008(15):68-68. [40] SHIRINZADEH B,ALICI G,FOONG C W,et al. Fabrication process of open surfaces by robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing,2004,20(1):17-28. [41] KONRAD K. Automated fiber placement systems overview[J]. Transactions of the Institute of Aviation,2016,4(245):52-59. [42] KREBS F,LARSEN L,BRAUN G,et al. Design of a multifunctional cell for aerospace CFRP production[J]. International Journal of Advanced Manufacturing Technology,2016,85(1-4):17-24. [43] JEFFRIES K A. Enhanced robotic automated fiber placement with accurate robot technology and modular fiber placement head[J]. Psychology of Addictive Behaviors Journal of the Society of Psychologists in Addictive Behaviors,2013,6(2):774-779. [44] KC Wu. NASA Automated fiber placement capabilities:similar systems,complementary purposes[EB/OL]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160007334.pdf. [45] AIZED T,SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. International Journal of Advanced Manufacturing Technology,2011,55(1-4):393-404. [46] TIAN L F,COLLINS C. An effective robot trajectory plan-ning method using agenetic algorithm[J]. Mechatronics,2004,12(5):455-470. [47] HÉLY C,BIRGLEN L,XIE W F. Feasibility study of robotic fibre placement on intersecting multi-axial revolution surfaces[J]. Robotics and Computer-Integrated Manufacturing,2017,48:73-79. [48] TOUSSAINT M. Robot trajectory optimization using approximate inference[C]//Proceedings of the 26th International Conference On Machine Learning,June 14-18:2009,Montreal,Quebec,Canada. New York:ACM,2009:1049-1056. [49] POLINI W,SORRENTINO L. Actual safety distance and winding tension to manufacture full section parts by robotized filament winding[J]. Journal of Engineering Materials and Technology-Transactions of the ASME,2006,128(3):393-400. [50] POLINI W,SORRENTINO L. AR models to forecast rovingtension trend in a robotized filament winding cell[J]. Materi-als and Manufacturing Processes,2006,21(8):870-876. [51] SCHMIDT C,DENKENA B,GROSS L,et al. Concept for automated production of CFRP-metal hybrid compounds integrated in an automated fiber placement process[J]. Procedia CIRP,2017,62:56-61. [52] WANG G Y,CAO J,LI C W. Winding technology of com-posite elbow based on dual-port RAM of PMAC[C]//2011 International Conference on Computer Science and Service System. Piscataway,NJ:IEEE Computer Society,2011:2842-2845. [53] RATERINK J C,NOOIJ S M,KOUSSIOS S. Improving the performance of fiber reinforced pressurizable products[D]. Delft University of Technology,2009. [54] DENKENA B,SCHMIDT C,WEBER P. Automated fiber placement head for manufacturing of innovative aerospace stiffening structures[J]. Procedia Manufacturing,2016,6:96-104. [55] RUSSELL D. ONCE (one-sided cell end effector) robotic drilling system[J]. SAE Technical Paper,2002(1):2626. [56] Automated assembly drilling & fastening[EB/OL].[2017-12-05]. http://www.broetje-automation.de/. [57] RUSSELL D,KEVIN S,ED F,et al. Robotic drilling system[R]. SAE,2002. [58] 韩乐理. EI公司机翼板件钻铆机[J]. 航空制造技术,2006(10):60-61. HAN Leli. EI wing plate rivet machine[J]. Aeronautical Manufacturing Technology,2006(10):60-61. [59] Automated assembly and machining of large FRP structures[EB/OL].[2017-12-05]. https://www.ifam.fraunhofer.de/en/Profile/Locations/Stade/FFM.html. [60] Manufacturing Intelligence[EB/OL].[2017-12-05]. http://www.amrc.co.uk/capabilities/composites-machining. [61] KIHLMAN H,ERIKSSON I,ENNIS M. Robotic orbital drilling of structures for aerospace applications[R]. SAE,2002. [62] PAN Z,ZHANG H,ZHU Z,et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology,2006,173(3):301-309. [63] PAN Z,ZHANG H. Analysis and suppression of chatter in robotic machining process[C]//International Conference on Control,Automation and Systems. Oct. 17-20,2007,COEX,Seoul,Korea. Piscataway:IEEE,2007:595-600. [64] BAUSCH J J,KRAMER B M,KAZEROONI H. The development of compliant tool holders for robotic deburring[C]//ASME Winter Annual Meeting,December,1986,Anaheim,California. New York:ASME,1986:1-17. [65] PERSOONS W,VANHERCK P. A process model for robotic cup grinding[J]. CIRP Annals Manufacturing Technology,1996,45(1),319-325. [66] RAFIEIAN F,HAZEL B,LIU Z. Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm[J]. Procedia CIRP,2014,14:406-411. [67] HAZEL B, RAFIEIAN F, LIU Z. Impact-cutting and regenerative chatter in robotic grinding[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. 2011. Denver,Colorado,USA,New York:ASME,2012:349-359. [68] TAHVILIAN A M,LIU Z,CHAMPLIAUD H,et al. Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot[J]. Journal of Materials Processing Tech,2013,213(12):2292-2303. [69] HAZEL B,COTE J,MONGENOT P,et al. Robotic polishing of turbine runners[C]//Applied Robotics for the Power Industry (CARPI),20122nd International Conference on. September 11-13,2012,Zurich,Switzerland. Piscataway:IEEE,2012:50-51. [70] JIN M,JI S,ZHANG L,et al. Material removal model and contact control of robotic gasbag polishing technique[C]//Robotics,Automation and Mechatronics,September21-242008,Chengdu,China. Piscataway:IEEE,2008:879-883. [71] MA Yurong,COHEN,SIDNEY R. Sea Urchin tooth design:an ''all-calcite'' polycrystalline reinforced fiber composite for grinding rocks[J]. Advanced Materials,2008,20(8):1555-1559. [72] NING F,CONG W,WANG H,et al. Surface grinding of CFRP composites with rotary ultrasonic machining:A mechanistic model on cutting force in the feed direction[J]. International Journal of Advanced Manufacturing Technology,2017(5):1-13. [73] 黄文宗,孙容磊,张鹏,等. 国内复合材料自动铺放技术发展[J]. 航空制造技术,2014,460(16):84-89. HUANG Wenzong,SUN Ronglei,ZHANG Peng,et al. Development of automated placement technology for composite material[J]. Aeronautical Manufacturing Technology,2014,460(16):84-89. [74] 龚长斌. 自动铺丝束机械手运动学动力学分析与优化[D]. 南京:南京航空航天大学,2006. GONG Changbin. Analysis and optimization of kinematics and dynamics for automated tow placement robot[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2006. [75] 卢敏. 复合材料构件自动铺丝成型中的路径生成算法研究[D]. 南京:南京航空航天大学,2011. LU Min. Fundamental research on path generation algorithm of composite components in automatic fiber placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011. [76] 宋清华,肖军,文立伟,等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报,2016,33(6):1214-1222. SONG Qinghua,XIAO Jun,WEN Liwei,et al. Study on automated fiber placement system for thermoplastic composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1214-1222. [77] 宋清华. 热塑性复合材料自动铺放过程温度场分析及构件性能研究[D]. 南京:南京航空航天大学,2016. SONG Qinghua,Research on temperature field during automated fiber placement and the mechanical properties of thermoplastic composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2016. [78] 王若舟. 面向自动铺放机器人的轨迹后置处理关键技术研究[D]. 南京:南京航空航天大学,2015. WANG Ruozhou. Research on key technology in trajectory post-processing method for composite material automated placement robot[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015. [79] 宋清华,刘卫平,肖军,等. 热塑性复合材料自动铺放工艺参数分析与优化[J]. 复合材料学报,2017(7):1-10. SONG Qinghua,LIU Weiping,XIAO Jun,et al. Analyze and optimize the processing parameters for automated fiber placement of thermoplastic composites[J]. Acta Materiae Compositae Sinica,2017(7):1-10. [80] 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学,2013. LI Yuehua. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology,2013. [81] 杜霖. 变刚度层合板力学性能分析及铺放成型技术研究[D]. 哈尔滨工业大学,2016. DU Lin. Study on mechanical behavior of variable stiffness laminates and its manufacturing technology with fiber placement[D]. Harbin:Harbin Institute of Technology,2016. [82] 刘纪成. 自动纤维铺丝机张力系统研制[D]. 哈尔滨:哈尔滨工业大学,2012. LIU Jicheng. Research on tension control system of fiber placement machine[D]. Harbin:Harbin Institute of Technology,2012. [83] 胡小立. 纤维丝铺放机构的设计研究[D]. 武汉:武汉理工大学,2011. HU Xiaoli. Design and research of fiber Placement machine[D]. Wuhan:Wuhan University of Technology,2011. [84] 周吉. 纤维铺放机器人及其关键技术研究[D]. 武汉:武汉理工大学,2012. ZHOU Ji. Research on robotic fibre placement and its key technology[D]. Wuhan:Wuhan University of Technology,2012. [85] 王会会. 缝线铺放机械手臂的设计研究[D]. 武汉:武汉理工大学,2012. WANG Huihui. Design and research of fibre placement robot[D]. Wuhan:Wuhan University of Technology,2012. [86] 徐小明,张武翔,丁希仑. 基于模块化的缠绕机设计方法研究[J]. 北京航空航天大学学报,2018,44(4):746-758. XUN Xiaoming,ZHANG Wuxiang,DING Xilun. Research on modular design method for filament winding machine[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):746-758.. [87] 张沛,张武翔,丁希仑. 缠绕机工艺参数调控系统模块化设计研究[J]. 南京工程学院学报,2017,15(2):10-16. ZHANG Pei,ZHANG Wuxiang,DING Xilun. Modular design of process-parameter regulating system for winding machines[J]. Journal of Nanjing Institute of Technology,2017,15(2):10-16. [88] 张鹏. 碳纤维预浸带自动铺放轨迹规划与铺放适宜性研究[D]. 武汉:华中科技大学,2016. ZHANG Peng. Study on trajectory planning and layup suitability of carbon fiber prepreg for automated placement[D]. Wuhan:Huazhong University of Science and Technology,2016. [89] 连海涛. 复合材料铺放工艺实验装备的设计与实现[D]. 武汉:华中科技大学,2013. LIAN Haitao. Design and implementation of experimental equipment for studying processing parameters of composite tape laying[D]. Wuhan:Huazhong University of Science and Technology,2013. [90] 李毅. 碳纤维自动铺放机械臂的力/位置混合控制方法研究[D]. 秦皇岛:燕山大学,2016. LI Yi. Study on hybrid force/position control of carbon fiber automatic placement manipulator[D]. Qinhuangdao:Yanshan University,2016. [91] 毕树生,梁杰,战强,等. 机器人技术在航空工业中的应用[J]. 航空制造技术,2009(4):34-39. BI Shuosheng,LIANG Jie,ZHAN Qiang. Applications of robotics technology in aviation industry[J]. Aeronautical Manufacturing Technology,2009(4):34-39. [92] 金龙. 碳纤维复合材料的机器人自动化制孔技术研究[D]. 杭州:浙江大学,2014. JIN Long,study on robot automatic drilling technology of carbon fiber reinforced plastics[D]. Hangzhou:Zhejiang University,2014. [93] 杨海涛. 基于机器人技术的碳蒙皮结构件制孔系统研究[D]. 哈尔滨:哈尔滨工业大学,2016. YANG Haitao. Research of hole making system for carbon skin structural components based on robot technology[D]. Harbin:Harbin Institute of Technology,2016. [94] 刘刚,陈祖朋,高凯晔,等. 基于机器人载体的螺旋铣制孔精度研究[J]. 应用基础与工程科学学报,2015,23(5):1047-1058. LIU Gang,CHEN Zupeng,GAO Kaiye,et al. Borehole accuracy study on a roboticorbital drilling system[J]. Journal of Basic Science and Engineering,2015,23(5):1047-1058. [95] 谢祥南. 螺旋铣制孔设备孔径自动控制系统设计研究[D]. 杭州:浙江大学,2014. XIE Xiangnan. Hole-diameter dynamic control system research & design of helical milling device[D]. Hangzhou:Zhejiang University,2014. [96] 单以才,何宁,李亮. 机器人化螺旋铣孔运动的矢量建模与仿真[J]. 计算机集成制造系统,2014,20(3):612-617. SHAN Yicai,HE Ning,LI Liang. Vector modeling and simulation of robotic orbital drilling motion[J]. Computer Integrated Manufacturing Systems,2014,20(3):612-617. [97] 王伟,贠超. 砂带磨削机器人的灵活性分析与优化[J]. 机器人,2010,32(1):48-54. WANG Wei,YUN Chao. Dexterity analysis and optimization of belt grinding robot[J]. ROBOT,2010,32(1):48-54. [98] 卜迟武. 风机叶片打磨机器人的控制研究[D]. 哈尔滨:哈尔滨工程大学,2012. BU Chiwu. Study on the control of wind turbine blade grinding robot[D]. Harbin:Harbin Institute of Technology,2012. [99] 孙一兰. 固体火箭发动机壳体内壁绝热层打磨机器人关键问题的研究[D]. 沈阳:东北大学,2009. SUN Yilan. Study on the key problems of solid rocket engines inner-wall insulation grinding robot[D]. Shenyang:Northeastern University,2009. [100] 曲梦可,王洪波,荣誉. 一种打磨机械臂的静刚度建模与实验[J]. 中国机械工程,2017,28(20):2395-2401. QUN Mengke,WANG Hongbo,RONG Yu. Static siffness modeling and experiments of polishing manipulator arm[J]. China Mechanical Engineering,2017,28(20):2395-2401. [101] 苗壮. 基于阻抗控制的复合材料管体螺纹磨削机器人控制研究[D]. 哈尔滨:哈尔滨理工大学,2016. MIAO Zhuang. Research on control of thread of composite pipe grinding robot based on impedance control[D]. Harbin:Harbin University of Science and Technology,2016. [102] 曾国强,陈庆盈,黄迪山,等. 机器人打磨碳纤维复合材料工艺研究[J]. 科学技术与工程,2016,16(15):228-233. ZENG Guoqiang,CHENG Qingying,HUANG Dishan,et al. Process researching of robotic grinding carbon fibre composite material[J]. Science Technology and Engineering,2016,16(15):228-233. [103] 黄婷,孙立宁,王振华,等. 基于被动柔顺的机器人抛磨力/位混合控制方法[J]. 机器人,2017,6(39):776-785. HUANG Ting,SUN Lining,WANG Zhenhua,et al. Hybrid force/position control method for robotic polishing based on passive compliance structure[J]. Robot,2017,6(39):776-785. [104] 赵亚平,杨桂林,杨巍,等. 气电混合式机器人力控末端执行器研究[J]. 组合机床与自动化加工技术,2016(12):103-106. ZHAO Yaping,YANG Guilin,YANG Wei,et al. Research on a pneumoelectric robotic end-effector with force control[J]. Modular Machine Tool & Automatic Manufacturing Technique,2016(12):103-106. |
[1] | QIN Guanglin, CUI Changcai, YIN Fangchen, HUANG Hui. Robotic Surface Scanning Viewpoint Planning for Complex 3D Stone Carving [J]. Journal of Mechanical Engineering, 2024, 60(8): 22-33. |
[2] | ZHANG Hang, FU Kuan, CHEN Minghao, LI Rui, SHI Xinna. Dynamic Evolution and Vibration Reduction Analysis of Multi-section Serial In-pipe Inspection Robot When Crossing Obstacles [J]. Journal of Mechanical Engineering, 2024, 60(8): 348-359. |
[3] | XU Fengyu, MA Kaiwei, SONG Julong, FAN Baojie, WU Xinjun. Vibration Reduction Mechanism and Control Method of Cable Climbing Robot Based on Spring-magnetorheological Damper [J]. Journal of Mechanical Engineering, 2024, 60(8): 384-395. |
[4] | DENG Jianxin, YUAN Bangyi, HUANG Qiulin, DING Dukun, XIN Manyu, LIU Guangming. Review on the Key Technologies of Complex Surfaces Polishing Based on Robots [J]. Journal of Mechanical Engineering, 2024, 60(7): 1-21. |
[5] | SHANG Deyong, HUANG Xinyi, HUANG Yunshan, ZHANG Tianyou. Research on Rigid-flexible Coupling Dynamics of Delta Parallel Robot Based on Kane Equation [J]. Journal of Mechanical Engineering, 2024, 60(7): 124-133. |
[6] | HU Song, XU Zhaobo, XIAO Leicai, FENG Pingfa, ZENG Long. Research on Reconfigurable and Flexible Assembly Technology for Cross-category Products [J]. Journal of Mechanical Engineering, 2024, 60(6): 69-81. |
[7] | ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots [J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18. |
[8] | LIU Daxin, WANG Ke, LIU Zhenyu, XU Jiatong, TAN Jianrong. Research on Digital Twin Modeling Method for Robotic Assembly Cell Based on Data Fusion and Knowledge Reasoning [J]. Journal of Mechanical Engineering, 2024, 60(5): 36-50. |
[9] | SHANG Deyong, HUANG Yunshan, HUANG Xinyi, PAN Zhan. Nonlinear Hybrid Control of Rigid Flexible Coupling Delta Robot Based on Singular Perturbation [J]. Journal of Mechanical Engineering, 2024, 60(5): 95-106. |
[10] | ZHOU Zuyi, YANG Yuwei, QI Wenyao, GONG Jianchao, LI Zhaotong. Method of Equivalent Inverse Solution of Multi-rigid-flexible Body Dynamics and Performance Optimization Synthesis of Waist Exoskeleton Robot [J]. Journal of Mechanical Engineering, 2024, 60(5): 107-118. |
[11] | MENG Yuan, SHI Baojun, ZHANG Dequan. Research and Improvement of Kriging-HDMR Modeling Method [J]. Journal of Mechanical Engineering, 2024, 60(5): 249-263. |
[12] | ZONG Huaizhi, AI Jikun, ZHANG Junhui, JIANG Lei, TAN Shujie, LIU Yuxian, SU Qi, XU Bing. Lightweight Design of Limb Leg Units for Hydraulic Quadruped Robots by Topology Optimization and Lattice Filling [J]. Journal of Mechanical Engineering, 2024, 60(4): 420-429. |
[13] | ZHAO Liangliang, LIU Ziyi, ZHAO Jingdong, DUAN Qifan, WANG Zirui, LIU Hong. Design and Verification of End-effector and Adaptation Interfaces for On-orbit Construction of Space Robot [J]. Journal of Mechanical Engineering, 2024, 60(3): 1-10. |
[14] | WANG Zhanxi, ZHANG Yiming, ZHANG Banghai, LUO Ziyan, SHI Mengge. Influence of Excitation Amplitude and Load on the Characteristics of a Quasi-zero Stiffness Isolator [J]. Journal of Mechanical Engineering, 2024, 60(3): 28-33. |
[15] | LIU Xiaofei, WAN Bo, WANG Yu, LI Mingyu, ZHAO Yongsheng. Design, Analysis and Performance Optimization of a Novel Super-redundantly Actuated Hybrid Robot [J]. Journal of Mechanical Engineering, 2024, 60(3): 55-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||