[1] ZHANG G P, HUANG Y M,SHI W H,et al. Predicting dynamic behaviors of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools and Manufacture,2003,43(7):699-706.
[2] SINGH B,NANDA B K. Identification of damping mechanism in layered and welded structures[J]. International Journal of Mechanical Sciences,2012,63(1):37-47.
[3] QUINN D D. Modal analysis of jointed structures[J]. Journal of Sound and Vibration,2012,331(1):81-93.
[4] MILLER J D,QUINN D D. A two-sided interface model for dissipation in structural systems with frictional joints[J]. Journal of Sound and Vibration,2009,321(1-2):201-219.
[5] ZHU L,LI H,WANG W. Research on rotary surface topography by orthogonal turn-milling[J]. International Journal of Advanced Manufacturing Technology,2013,69(9-12):2279-2292.
[6] ZHAI C,GAN Y,HANAOR D,et al. The role of surface structure in normal contact stiffness[J]. Experimental Mechanics,2015,56(3):1-10.
[7] GREENWOOD J,WILLIAMSON J P. Contact of nominally flat surfaces[C]//Contact of nominally flat surfaces. Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences. The Royal Society,1966:300-319.
[8] MAJUMDAR A,BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology,1991,113(1):1-11.
[9] WANG S,KOMVOPOULOS K. A fractal theory of the interfacial temperature distribution in the slow sliding regime:Part Ⅱ-multiple domains,elastoplastic contacts and applications[J]. Journal of Tribology,1994,116(4):824-832.
[10] ZHAO Y,MAIETTA D M,CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology,2000,122(1):86-93.
[11] JIANG S,ZHENG Y,ZHU H. A contact stiffness model of machined plane joint based on fractal theory[J]. Journal of Tribology,2010,132(1):1.
[12] 田红亮,董元发,余媛,等. 机床地脚低速滑动界面法向刚度分形模型及试验验证[J]. 机械工程学报,2017,53(17):172-184. TIAN Hongliang,DONG Yuanfa,YU Yuan,et al. Fractal model of normal stiffness for slow sliding surface in machine tool ground foot and experimental confirmation[J]. Journal of Mechanical Engineering,2017,53(17):172-184.
[13] LIAO J,ZHANG J,FENG P,et al. Identification of contact stiffness of shrink-fit tool-holder joint based on fractal theory[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5):2173-2184.
[14] 李小彭,王伟,赵米鹊,等. 考虑摩擦因素影响的结合面切向接触阻尼分形预估模型及其仿真[J]. 机械工程学报,2012,48(23):46-50. LI Xiaopeng,WANG Wei,ZHAO Mique,et al. Fractal prediction model for tangential contact damping of joint surface considering friction factors and its simulation[J]. Journal of Mechanical Engineering,2012,48(23):46-50.
[15] 陈奇,黄守武,张振,等. 考虑摩擦因素的两圆柱体表面接触承载能力的分形模型研究[J]. 机械工程学报,2016,52(7):114-121. CHEN Qi,HUANG Shouwu,ZHANG Zhen,et al. Research on fractal contact model for contact carrying capacity of two cylinders' surfaces considering friction factors[J]. Journal of Mechanical Engineering,2016,52(7):114-121.
[16] 杨红平,傅卫平,王雯,等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型[J]. 机械工程学报,2013,49(1):102-107. YANG Hongping,FU Weiping,WANG Wen,et al. Calculation model of the normal contact stiffness of joints based on the fractal geometry and contact theory[J]. Journal of Mechanical Engineering,2013,49(1):102-107.
[17] WANG G F,LONG J M,FENG X Q. A self-consistent model for the elastic contact of rough surfaces[J]. Acta Mechanica,2014,226(2):285-293.
[18] ZHAO Y,CHANG L. A model of asperity interactions in elastic-plastic contact of rough surfaces[J]. Journal of Tribology,2001,123(4):857.
[19] CIAVARELLA M,GREENWOOD J A,PAGGI M. Inclusion of "interaction" in the Greenwood and Williamson contact theory[J]. Wear,2008,265(5-6):729-734.
[20] TANG Z C,JIAO Y Y,WONG L N Y. Theoretical model with multi-asperity interaction for the closure behavior of rock joint[J]. International Journal of Rock Mechanics & Mining Sciences,2017,97:15-23.
[21] WU J J. Characterization of fractal surfaces[J]. Wear,2000,239(1):36-47. |