[1] XIE Y,ZHANG H,ZHOU F. Improvement in geometrical accuracy and mechanical property for arc-based additive manufacturing using metamorphic rolling mechanism[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2016,138:111001-111002. [2] MA Y,CUIURI D,LI H,et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process[J]. Materials Science and Engineering:A,2016,657:86-95. [3] 徐富家. Inconel625合金等离子弧快速成形组织控制及工艺优化[D]. 哈尔滨:哈尔滨工业大学,2013. XU Jiafu. Microstructure control and process optimization of inconel 625 alloy fabricated by plasma arc rapid prototyping[D]. Harbin:Harbin Institute of Technology,2013. [4] HASELHUHN A S,BUHR M W,WIJNEN B,et al. Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing[J]. Materials Science and Engineering:A,2016,673:511-523. [5] SZOST B A,TERZI S,MARTINA F,et al. A comparative study of additive manufacturing techniques:Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design,2016,89:559-567. [6] LIM Y C,YU X,CHO J H,et al. Effect of magnetic stirring on grain structure refinement:Part 1-Autogenous nickel alloy welds[J]. Science and Technology of Welding and Joining,2010,15(7):583-589. [7] METAN V,EIGENFELD K. Controlling mechanical and physical properties of Al-Si alloys by controlling grain size through grain refinement and electromagnetic stirring[J]. The European Physical Journal Special Topics,2013,220(1):139-150. [8] LI X,GAGNOUD A,FAUTRELLE Y,et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Materialia,2012,60(8):3321-3332. [9] 柏兴旺,张海鸥,周祥曼,等. 外加高频磁场下电弧快速成形过程的电磁-流体耦合数值模拟[J]. 机械工程学报,2016,52(4):60-66. BAI Xingwang,ZHANG Haioou,ZHOU Xiangman,et al. Electromagneto-fluid coupling simulation of arc rapidprototyping process with external high-frequency magnetic field[J]. Journal of Mechanical Engineering,2016,52(4):60-66. [10] XU Y,XU R,FAN Z,et al. Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring[J]. International Journal of Minerals,Metallurgy,and Materials,2016,23(5):534-541. [11] XU G,HU J,TSAI H L. Modeling Three-dimensional plasma arc in gas tungsten arc welding[J]. Journal of Manufacturing Science and Engineering,2012,134(3):31001. [12] HU J,TSAI H L. Heat and mass transfer in gas metal arc welding. Part I:The arc[J]. International Journal of Heat and Mass Transfer,2007,50(5-6):833-846. [13] HU J,TSAI H L. Heat and mass transfer in gas metal arc welding. Part Ⅱ:The metal[J]. International Journal of Heat and Mass Transfer,2007,50(5-6):808-820. [14] RAO Z H,HU J,LIAO S M,et al. Modeling of the transport phenomena in GMAW using argon-helium mixtures. Part I-The arc[J]. International Journal of Heat and Mass Transfer,2010,53(25-26):5707-5721. [15] HU J,GUO H,TSAI H L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding[J]. International Journal of Heat and Mass Transfer,2008,51(9-10):2537-2552. [16] RAO Z H,ZHOU J,LIAO S M,et al. Three-dimensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding[J]. Journal of Applied Physics,2010,107(5):54905. [17] 张涛. PAW焊接熔池-小孔流场与热场动态行为的数值分析[D]. 济南:山东大学,2011. ZHANG Tao. Numerical analysis of dynamic heat transfer and fluid flow in PAW weld pool and keyhole[D]. Jinan:Shandong University,2011. [18] WU C S,ZHANG T,FENG Y H. Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole[J]. International Journal of Heat and Fluid Flow,2013,40:186-197. [19] LI Y,WU C S,WANG L,et al. Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding[J]. Journal of Materials Processing Technology,2016,229:207-215. [20] JIAN X,WU C S. Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J]. International Journal of Heat and Mass Transfer,2015,84:839-847. [21] 王新鑫,樊丁,黄健康,等. 双钨极耦合电弧数值模拟[J]. 物理学报,2013,62(22):228101. WANG Xinxing,FAN Ding,HUANG Jiankang,et al. Numerical simulation of coupled arc in double electrode tungsten inert gas welding[J]. Acta Physica Sinica,2013(22):228101. [22] WANG X,FAN D,HUANG J,et al. Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding[J]. International Journal of Heat and Mass Transfer,2015,85:924-934. [23] 周祥曼,张海鸥,王桂兰,等. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真[J]. 物理学报,2016,65(3):323-334. ZHOU Xiangman,ZHANG Haiou,WANG Guilan,et al. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming[J]. Acta Physica Sinica,2016,65(3):323-334. [24] ZHOU X M,ZHANG H O,WANG G L,et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J]. International Journal of Heat and Mass Transfer,2016(103):521-537. [25] 罗键,贾昌申,王雅生,等. 外加纵向磁场GTAW焊接熔池流动机理[J]. 机械工程学报,2001,37(4):29-32. LUO Jian,JIA Changshen,WANG Yasheng,et al. Fluid flow of LD10CS aluminum alloy weld pools in GTAW with longitudinal magnetic field controlling[J]. Journal of Mechanical Engineering,2001,37(4):29-32. [26] YIN X Q,GOU J J,ZHANG J X,et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics,2012,45(28):285203-285215. [27] 刘一搏,张鸿名,孙清洁,等. 磁场作用下铝/钢CMT焊接温度场及熔池流动行为[J/OL]. 机械工程学报, 2018,54(2):48-54. LIU Yibo,ZHANG Hongming,SUN Qingjie,et al. Effect of magnetic field on the weld temperature field and flow behavior of molten pool in Al/steel CMT welding process.[J/OL]. Journal of Mechanical Engineering,2018,54(2):48-54 [28] LI Y,WU C S,WANG L,et al. Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding[J]. Journal of Materials Processing Technology,2016,229:207-215. [29] LIU J W,RAO Z H,LIAO S M,et al. Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents[J]. International Journal of Heat and Mass Transfer,2015,91:990-1000. [30] 饶政华. 熔化极气体保护焊传热与传质过程的数值研究[D]. 长沙:中南大学,2010. RAO Zhenghua. Modeling of heat and mass transfer during gas metal arc welding[D]. Changsha:Central South University,2010. [31] JONES L A,EAGAR T W,LANG J H. A dynamic model of drops detaching from a gas metal arc welding electrode[J]. Journal of Physics D Applied Physics,1998,31(1):107. [32] LIM Y C,YU X,CHO J H,et al. Effect of magnetic stirring on grain structure refinement Part 2-Nickel alloy weld overlays[J]. Science and Technology of Welding and Joining,2010,15(5):400-406. [33] 车小平. 纵向磁场作用下铝合金MIG焊接试验研究及数值模拟[D]. 沈阳:沈阳工业大学,2007. CHE Xiaoping. Study on the welding test of alalloy and simulation in MIG arc welding with longitudinal magnetic field[D]. Shenyang:Shenyang University of Technology,2007. [34] MALINOWSKI-BRODNICKA M,OUDEN G D,VINK W J P. Effect of electromagnetic stirring on gta welds in austenitic stainless steel[J]. Welding Research Supplement,1990(2):52-59. |