[1] 朱才朝, 罗家元, 李大峰, 等. 7075铝合金板预拉伸工艺研究[J]. 机械工程学报, 2011, 47(24):57-62. ZHU Caichao, LUO Yuan, LI Dafeng, 7075 aluminum alloy sheet and other studies pre-stretching process[J] Journal of Mechanical Engineering, 2011, 47(24):57-62. [2] 苏景新, 邹阳, 陈康敏, 等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8):91-96. SU Jingxin, ZOU Yang, CHEN Kangmin, et al. Airliner 7075-T6 aluminum siding corrosion behavior and mechanism[J]. Journal of Mechanical Engineering, 2013, 49(8):91-96. [3] FORSYTH P. Fatigue damage and crack growth in aluminium alloys[J]. Acta Metallurgica, 1963,11(7):703-715. [4] CANTRELL J H. Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life[J]. Journal of Applied Physics, 2009,106(9):93516. [5] KUHLMANN-WILSDORF D, LAIRD C. Dislocation behavior in fatigue[J]. Materials Science and Engineering, 1977, 27(2):137-156. [6] BROWN L M. Dislocation plasticity in persistent slip bands[J]. Materials Science and Engineering:A, 2000, 285(1):35-42. [7] HIROSE S, ACHENBACH J D. Higher harmonics in the far field due to dynamic crack-face contacting[J]. The Journal of the Acoustical Society of America, 1993,93(1):142-147. [8] ACHENBACH J D, NORRIS A N. Loss of specular reflection due to nonlinear crack-face interaction[J]. Journal of Nondestructive evaluation, 1982,3(4):229-239. [9] CANTRELL J H. Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 2004, 460(2043):757-780. [10] BREAZEALE M A, PHILIP J. Determination of third-order elastic constants from ultrasonic harmonic generation measurements[J]. Physical Acoustics:Principles and Methods, 1984, 17:1-60. |