[1] HE Can, XING Jianchun, LI Juelong. A new wavelet thresholding function based on hyperbolic tangent function[J]. Mathematical Problems in Engineering, 2015:1-9. [2] JIA H R, ZHANG X Y, BAI J. A continuous differentiable wavelet threshold function for speech enhancement[J]. Journal of Central South University, 2013,20(8):2219-2225. [3] CHEN Xiaojuan, LI Siyang, WANG Wenting. New de-noising method for speech signal based on wavelet entropy and adaptive threshold[J]. Journal of Information and Computational Science, 2015, 12(3):1257-1265. [4] 焦卫东, 蒋永华, 林树森. 基于经验模态分解的改进乘性噪声去除方法[J]. 机械工程学报, 2015, 51(24):1-8. JIAO Weidong, JIANG Yonghua, LIN Shusen. Modified signal de-noising approach for multiplicative noise based on empirical mode decomposition[J]. Journal of Mechanical Engineering, 2015, 51(24):1-8. [5] 秦毅, 秦树人, 毛永芳. 小波变换中经验模态分解的基波检测及其在机械系统中的应用[J]. 机械工程学报, 2008, 44(3):135-142. QIN Yi, QIN Shuren, MAO Yongfang. Fundamental wave detection based on wavelet transform and empirical mode decomposition with application in mechanical system[J]. Journal of Mechanical Engineering, 2008, 44(3):135-142. [6] 郭晨城, 文玉梅, 李平, 等. 采用EMD的管道泄漏声信号增强[J]. 仪器仪表学报, 2015, 36(6):1397-1405. GUO Chencheng, WEN Yumei, LI Ping, et al. Enhancement of leak signals using EMD in pipeline[J]. Chinese Journal of Scientific Instrument, 2015, 36(6):1397-1405. [7] 韩东颖, 丁雪娟, 时培明. 基于自适应变尺度频移带通随机共振降噪的EMD多频微弱信号检测[J]. 机械工程学报, 2013, 49(8):10-18. HAN Dongying, DING Xuejuan, SHI Peiming. Multi-frequency weak signal detection based on EMD after de-noising by adaptive re-scaling frequency-shifted band-pass stochastic resonance[J]. Journal of Mechanical Engineering, 2013, 49(8):10-18. [8] 薛延刚. 基于EMD和Multi-fractal spectrum的BP水机故障诊断[J]. 排灌机械工程学报, 2016, 34(5):455-460. XUE Yangang. An investigation into fault diagnosis of hydro-turbine unit based on EMD multi-fractal spectrum[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(5):455-460. [9] 雷亚国,孔德同,李乃鹏,等. 自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用[J]. 机械工程学报, 2014, 50(3):64-70. LEI Yaguo, KONG Detong, LI Naipeng, et al. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes[J]. Journal of Mechanical Engineering, 2014, 50(3):64-70. [10] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceeding of the Royal Society, 1998(454):903-993. [11] KONSTANTIN D, DOMINIQUE Z. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544. [12] STEIN D.Detection of random signals in Gaussian mixturenoise[J].IEEE Trans Inf Theory,1995,41(6):1788-1801. [13] 苗晓婷, 赵晶晶, 李富才, 等. 一种基于波信号能量谱相关系数的损伤定位方法[J]. 机械工程学报,2016,52(15):73-80. MIAO Xiaoting,ZHAO Jingjing,LI Fucai,et al. A damage location metlod based on the correlation coefficient of energy spectram for nave signals[J]. Journal of Mechanical Engineering,2016,52(15):73-80. [14] XU W,CHANG C,HUNG Y S,et al. Asymptotic properties of order statistics correlation coefficient in the normal cases[J].IEEE Trans Signal Process,2008,56(6):2239-2248. [15] XU W,HUNG Y S,NIRANJAN M,et al. Asymptotic meanand variance of gini correlation for bivariate normal samples[J].IEEE Trans Signal Process,2010,58(2):522-534. |