Journal of Mechanical Engineering ›› 2018, Vol. 54 ›› Issue (5): 74-83.doi: 10.3901/JME.2018.05.074
Previous Articles Next Articles
MU Dejun1,2, ZHANG Yitong1,2, ZHANG Xing3
Received:
2016-12-14
Revised:
2017-07-06
Online:
2018-03-05
Published:
2018-03-05
CLC Number:
MU Dejun, ZHANG Yitong, ZHANG Xing. Relations between DOF of Mechanism and DOF of Links and Their Essential Differences[J]. Journal of Mechanical Engineering, 2018, 54(5): 74-83.
[1] RICO J M,AGUILERA L D,GALLARDO J. Computer implementation of an improved Kutzbach-Grübler mobility criterion[C]//ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference,September 29-October 2,2002,Montreal,Quebec,Canada. 2002:DETC 2002/DAC-34093. [2] RICO J M,RAVANI B. On mobility analysis of linkages using group theory[J]. Trans. ASME J. Mech. Des.,2003,125(1):70-80. [3] RICO J M,AGUILERA L D. GALLARDO J,et al. A more general mobility criterion for parallel manipulators[J]. ASME Journal of Mechanical Design,2006,128(1):207-219. [4] GOGU G. Mobility and spatiality of parallel robots revisited via theory of linear transformations[J]. European Journal of Mechanics-A/Solids,2005,24(4):690-711. [5] GOGU G. Bifurcation in constraint singularities and structural parameters of parallel mechanisms[J]. Meccanica,2011,46(1):65-74. [6] HUNT K H. Kinematic geometry of mechanisms[M]. Oxford:Clarendon Press,1978. [7] 黄真,刘婧芳,李艳文.论机构自由度[M].北京:科学出版社,2012. HUANG Zhen,LIU Jingfang,LI Yanwen. Mobility of mechanisms[M]. Beijing:Science Press,2012. [8] HUANG Z,LIU J F,ZENG D X. A general methodology for mobility analysis of mechanisms based on constraint screw theory[J]. Sci. China Tech. Sci.,2009,50(5):1337-1347. [9] LIU X J,WANG J S. Parallel kinematics:Types,kinematics and optimal design[M]. Berlin Heidelberg:Springer-Verlag,2014. [10] 戴建生. 机构学与机器人的几何与旋量代数[M]. 北京:高等教育出版社,2014. DAI Jiansheng. Geometrical foundations and screw algebra for mechanisms and robotics[M]. Beijing:Higher Education Press,2014. [11] YANG T L,SUN D J. A general formula of degree of freedom for parallel mechanisms[C]//ASME 32th Mechanisms and Robots Conference,August 3-6,2008,Brooklyn,New York,USA. 2008:DETC2008-49077. [12] 杨廷力,刘安心,罗玉峰,等:机器人机构结构综合方法的基本思想、特点及其发展趋势[J]. 机械工程学报,2010,46(9):1-11. YANG Tingli,LIU Anxin,LUO Yufeng,et al. Basic principle,main characteristics and development tendency of methods for robot mechanism structure synthesis[J]. Journal of Mechanical Engineering,2010,46(9):1-11. [13] YANG T L,SUN D J. A general degree of freedom formula for parallel mechanisms and multiloop spatial mechanisms[J]. Journal of Mechanisms and Robotics,2012,4:1-17. [14] 杨廷力,刘安心,罗玉峰,等.机器人机构拓扑结构设计[M]. 北京:科学出版社,2012. YANG Tingli,LIU Anxin,LUO Yufeng,et al. Theory and application of robot mechanism topology[M]. Beijing:Science Press,2012. [15] 沈惠平,尹洪波,李菊,等.基于方位特征方法的范例并联机构的拓扑特征分析及其启示与应用[J]. 机械工程学报,2015,51(13):101-115. SHEN Huiping,YIN Hongbo,LI Ju,et al. Position and orientation characteristic based method and enlightenment for topology characteristic analysis of typical parallel mechanisms and its application[J]. Journal of Mechanical Engineering,2015,51(13):101-115. [16] ZHANG Y T,MU D J. New concept and new theory of mobility calculation for multi-loop mechanisms[J]. Sci. China Tech. Sci.,2010,53:1598-1604. [17] ZHANG Y T,LI Y W,WANG L Y. A new formula of mechanism mobility based on virtual constraint loop[J]. Sci. China Tech. Sci.,2011,54:2768-2775. [18] ZHANG Y T,LU W J,MU D J,et al. Novel mobility formula for parallel mechanisms expressed with mobility of general link group[J]. Chinese Journal of Mechanical Engineering,2013,26(6):1082-1090. [19] IFToMM commission a standards terminology. Terminology for the theory of machines and mechanisms[J]. Mech. Mach. Theory,1991,26(5):435-539. [20] IFToMM permanent commission for standardization of terminology:Terminology for the mechanism and machine science[J]. Mech. Mach. Theory,2003,38:597-605. [21] 杨廷力,沈惠平,刘安心,等. 机构自由度公式的基本形式、自由度分析及其物理内涵[J]. 机械工程学报,2015,51(13):69-80. YANG Tingli,SHEN Huiping,LIU Anxin,et al. Review of the formulas for degrees of freedom in the past ten years[J]. Journal of Mechanical Engineering,2015,51(13):69-80. [22] 陈子明,张扬,黄坤,等. 一种无伴随运动的对称两转一移并联机构[J]. 机械工程学报,2016,52(3):9-17. CHEN Ziming,ZHANG Yang,HUANG Kun,et al. Symmetrical 2R1T parallel mechanism without parasitic motion[J]. Journal of Mechanical Engineering,2016,52(3):9-17. [23] 曾达幸,王华明,樊明洲,等.3自由度转动广义解耦并联机构构型综合[J]. 机械工程学报,2017,53(3):17-24. ZENG Daxing,WANG Huaming,FAN Mingzhou,et al. Type synthesis of three degrees of freedom rotational generalized decoupling parallel mechanism[J]. Journal of Mechanical Engineering,2017,53(3):17-24. [24] LU W J,ZENG D X,HUANG Z. Over-constraints and a unified mobility method for general spatial mechanisms. Part 2:Application of the principle[J]. Chinese Journal of Mechanical Engineering,2016,29(1):1-10. [25] XU Y D,ZHANG D S,WANG M,et al. Type synthesis of two-degrees-of-freedom rotational parallel mechanism with two continuous rotational axes[J]. Chinese Journal of Mechanical Engineering,2016,29(4):694-702. [26] KONG X,GOSSELIN C M. Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain[C]//2005 ASME Design Engineering Technical Conference & Computers and Information in Engineering Conference,Sept. 24-28,2005,Long Beach,California,USA. 2005:DETC2005-85337. [27] 李秦川,陈巧红,武传宇,等. 变自由度4-xPxRxRxRyRN并联机构[J]. 机械工程学报,2009,45(1):83-87. LI Qinchuan,CHEN Qiaohong,WU Chuanyu,et al. 4-xPxRxRxRyRN parallel mechanism with variable mobility[J]. Journal of Mechanical Engineering,2009,45(1):83-87. [28] BAGCI C. Degrees of freedom of motion in mechanisms[J]. Trans. ASME Ser. B,1971,93(1):140-148. |
[1] | ZHAO Xin, HUANG Jinjie. Optimization Methodology for Additive Manufacturing Parameter by Fused Deposition Modeling (FDM) Based on RSM-RVEA [J]. Journal of Mechanical Engineering, 2024, 60(19): 277-297. |
[2] | YU Jinxu, YAN Jianhua, WANG Xiaoran, ZHANG Lijie, XIE Ping, LI Yongquan. Design and Verification of a Human-machine Fusion Hand Exoskeleton Robot [J]. Journal of Mechanical Engineering, 2024, 60(17): 102-110. |
[3] | MU Dejun, CHEN Xianling, CHANG Xuelong, HU Bo. Analysis of Terminal Constraints and DOF of (2-UPU+SPR)+(2-UPU+RPS) Asymmetric Hybrid Manipulator [J]. Journal of Mechanical Engineering, 2024, 60(17): 272-282. |
[4] | YU Jinxu, YAN Jianhua, XIAO Junming, LI Yongquan, XIE Ping, ZHANG Lijie. Establishment and Verification of Finger Joint Kinematic Model Based on the Combination of Medicine and Engineering [J]. Journal of Mechanical Engineering, 2024, 60(15): 149-159. |
[5] | WU Zhen, LI Qinchuan, YE Wei. Inverse Position Optimization Method of Kinematically Redundant Parallel Mechanisms Based on Natural Frequency [J]. Journal of Mechanical Engineering, 2024, 60(13): 297-307. |
[6] | XU Wenlin, PENG Yu, HE Zhicheng, JIANG Chao. Kinematic Topological Configuration Design of Mechanism Partitions for Complex Path Planning [J]. Journal of Mechanical Engineering, 2024, 60(11): 62-73. |
[7] | LIU Wei, LIU Hongzhao. Kinematic Position Analysis of a 7R Double Loops Spherical Mechanism without Resultant Elimination [J]. Journal of Mechanical Engineering, 2024, 60(7): 45-53. |
[8] | CHANG Boyan, HAN Fangxiao, ZHOU Yang, JIN Guoguang. Impact Dynamics of High-speed Metamorphic Mechanism for Comber [J]. Journal of Mechanical Engineering, 2024, 60(7): 54-65. |
[9] | ZHANG Leilei, ZHAO Yanzhi, ZHAO Tieshi. State of the Art of Axodes Traced by Parallel Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(21): 131-146. |
[10] | YAO Pengfei, LÜ Shengnan, ZHANG Wuxiang, DING Xilun. Double-ring Deployable Antenna Mechanism Based on Square Frustum-shaped Bricard Units [J]. Journal of Mechanical Engineering, 2023, 59(21): 147-156. |
[11] | LU Chenhao, CHEN Yao, HE Ruoqi, FAN Weiying, FENG Jian. Developing Four-fold Conical Origami Structures Using Deep Neural Network [J]. Journal of Mechanical Engineering, 2023, 59(21): 167-176. |
[12] | ZHAN Jinqing, YAN Jiakun, PU Shengxin, ZHU Benliang, LIU Min. Topological Design of Electrothermomechanical Compliant Mechanisms Using Isogeomtric Analysis [J]. Journal of Mechanical Engineering, 2023, 59(21): 177-187. |
[13] | LIU Xinjun, YU Jingjun, XIE Fugui, ZHAO Huichan, MENG Qizhi. Behaviour-based Mechanism and the Innovative Design of High-end Equipment [J]. Journal of Mechanical Engineering, 2023, 59(19): 202-212. |
[14] | LI Haihong, DONG Jinan, GUO Shanguo, LIU Zhiqi. Analysis and Design Method for Non-uniform Parallel Mechanism Structure of Dynamic/Static Platform [J]. Journal of Mechanical Engineering, 2023, 59(17): 116-125. |
[15] | YANG Yibo, WANG Manxin. Modeling and Analysis of Position Accuracy Reliability of R(RPS&RP)& 2-UPS Parallel Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(15): 62-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||