[1] 饶思贤, 彭辉,周煜,等. TP347H的高温蠕变-疲劳交互规律[J]. 机械工程学报, 2015, 51(2):37-42. RAO Sixian, PENG Hui, ZHOU Yu, et al. Interactions between creep and fatigue of TP347H under high temperature[J]. Journal of Mechanical Engineering, 2015, 51(2):37-42. [2] 黄兆波. 进口千吨级挤压机大过盈双层热套合挤压筒的自制更换[J]. 云南冶金, 2000, 29(1):92-96. HUANG Zhaobo. Manufacture and replacement of large-interference double layer hot-assembled extrusion cylinder in imported extruder[J]. Yunnan Metallurgy, 2000, 29(1):92-96. [3] WIESER C S, HABERFELLNER P, LEHOFER H. New developments in the design and production of container assemblies[C]//ET'04-Proc 8th Inter Aluminium Extrusion Technology Seminar, Orlando, 2004:309-316. [4] STENGER K. Extrusion:Processes, machinery, tooling[M]. Ohio:American Society for Metals. Metals Parks, 1981. [5] 敖文刚. 运用统一强度理论分析预应力组合圆筒分层半径和过盈量[J]. 重庆工商大学学报, 2011, 28(3):283-287. AO Wengang. Interference and radius analysis of prestressed-assembled container based on unified strength theory[J]. Journal of Chongqing Technology Business University, 2011, 28(3):283-287. [6] 赵云路,刘静安. 圆挤压筒改装成扁挤压筒的试验研究-80MN挤压机670mm×270mm×1600mm扁挤压筒的设计与制造[J]. 轻合金加工技术, 2001, 29(6):29-35. ZHAO Yunlu, LIU Jingan. Trail study on round container into flat one in extrusion press-design and manufacture of 670mm×270mm×1600mm[J]. Light Alloy Fabricaton Technology, 2001, 29(6):29-35. [7] PARKER J. Bauschinger effect design procedures for compound tubes containing an autofrettaged layer[J]. Journal of Pressure Vessel Technology, 2001, 123(1):203-206. [8] JAHED H, KARIMI M. Optimum autofrettage and shrink-fit combination in multi-layer cylinders[J]. Journal of Pressure Vessel Technology, 2006, 128(1):196-200. [9] 陈学东,范志超,江慧丰,等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报, 2009, 45(2):81-87. CHEN Xuedong, FAN Zhichao, JIANG Huifeng, et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions[J]. Journal of Mechanical Engineering, 2009, 45(2):81-87. [10] 刘俭辉,王生楠,黄新春,等. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20):120-127. LIU Jianhui, WANG Shengnan, HUANG Xinchun, et al. Multiaxial fatigue life prediction based on damage mechanics and critical plane method[J]. Journal of Mechanical Engineering, 2015, 51(20):120-127. [11] PEDERSEN T. Numerical studies of low cycle fatigue in forward extrusion dies[J]. J. Mater. Process Technol., 2000, 105(1):359-70. [12] SOMMITSCH C, SIEVERT R, WLANIS T, et al. Modelling of creep-fatigue in containers during aluminium and copper extrusion[J]. Computational Materials Science, 2007, 39(1):55-64. [13] SOMMITSCH C, SIEVERT R, WLANIS T, et al. Lifetime evaluation of two different hot work tool steels in aluminium extrusion[J]. Computational Materials Science, 2008, 43(1):82-91. [14] LUO Y X, XIONG Y, WANG Y Q. A new model for predicting of stresses on the compound extrusion container[J]. WSEAS Transactions on Applied And Theoretical Mechanics, 2014, 9(1):229-237. [15] 赵少汴,高镇同. 抗疲劳设计[M]. 北京:机械工业出版社, 1994. ZHAO Shaobian, GAO Zhentong. Design of fatigue resistance[M]. Beijing:China Machine Press, 1994. [16] 赵少汴,王忠保. 抗疲劳设计——方法与数据[M]. 北京:机械工业出版社, 1997. ZHAO Shaobian, WANG Zhongbao. Design of fatigue resistance:Methods and data[M]. Beijing:China Machine Press, 1997. [17] YUNG L, HATHAWAY R. 疲劳试验测试分析理论与实践[M]. 北京:国防工业出版社, 2011. YUNG L, HATHAWAY R. Analytical theory and application of fatigue test[M]. Beijing:National Defence Industry Press, 2011. [18] 张俊善. 材料高温变形与断裂[M]. 北京:科学出版社, 2007. ZHANG Junshan. Material deformation and fracture in high temperature[M]. Beijing:Science Press, 2007. [19] BÖHLER. Extrusion tooling-die steels and components for extrusion[R]. Böhler Extrusion Tooling, 2007. |