[1] 刘志东. 特种加工[M]. 北京:北京大学出版社, 2013. 12-16 LIU Zhidong. Non-traditional Machining [M]. Beijing: Peking University Press,2013. [2] SAMEH S. H. Study of the parameters in electrical discharge machining through response surface methodology approach[J]. Applied Mathematical Modelling,2009,33(12):4397-4407. [3] TZENG C J,CHEN R Y. Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach[J]. Int. Journal of Precision Engineering and Manufacturing,2013,14(5):709-717. [4] 杨晓冬,赵万生,刘光壮,等. 基于神经网络的型腔电火花加工工艺效果预测模型[J]. 航空制造技术,2001(3):41-43. YANG Xiaodong,ZHAO Wansheng,LIU Guangzhuang,et al. Forecasting model of technological effect for die sinking EDM based on ANN [J]. Aeronautical Manufacturing Technology,2001(3):41-43. [5] GAO Qing,ZHANG Qinhe,SU Shupeng,et al. Parameter optimization model in electrical discharge machining process[J]. Journal of Zhejiang University Science A,2008,9(1):104-108. [6] 瓦普尼克. 统计学习理论的本质[M].北京:清华大学出版社,2000. VAPNIK. The nature of statistical learning theory [M]. 7 Beijing:Tsinghua University Press,2000. [7] SMOLA A J,BERNHARD S. A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3):199-222. [8] JIANG Zhuoda. Intelligent prediction of surface roughness of milling aluminium alloy based on least square support vector machine [C]// Control and Decision Conference (CCDC),America: IEEE,2010. 2872-2876. [9] WANG Peigong,MENG Qingfeng,ZHAO Jian,et al. Prediction of machine tool condition using support vector machine [J]. Journal of Physics:Conference Series,2011,305(1):1-9. [10] 张玲瑄. 高效微细电火花加工若干关键技术研究[D]. 辽宁:大连理工大学,2012. ZHANG Lingxuan. Key technology study on high efficiency micro EDM [D]. Dalian:Dalian University of Technology,2012. [11] 雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M]. 陕西:西安电子科技大学出版社,2014. LEI Yingjie,ZHANG Shanwen,LI Xuwu,et al. Genetic algorithm toolbox and applications [M]. Xi’an: Xidian University Press,2014. |