• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (14): 23-31.doi: 10.3901/JME.2021.14.023

• 特邀专栏:电源系统设计、管理与大数据 • 上一篇    下一篇

扫码分享

车用锂离子电池系统热蔓延试验与机理研究

江发潮1, 章方树1,2, 徐成善1,2, 李成2, 王书洋3, 任毅3, 冯旭宁2   

  1. 1. 中国农业大学工学院 北京 100083;
    2. 清华大学汽车安全与节能国家重点实验室 北京 100084;
    3. 中国第一汽车股份有限公司新能源开发院电池研究所 吉林 130011
  • 收稿日期:2020-07-05 修回日期:2021-03-05 出版日期:2021-09-15 发布日期:2021-09-15
  • 通讯作者: 冯旭宁(通信作者),男,1988年出生,博士,助理教授,博士研究生导师。主要研究方向为储能电池安全性。E-mail:fxn17@mail.tsinghua.edu.cn
  • 作者简介:江发潮,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为节能与新能源汽车。E-mail:jfachao@cau.edu.cn;章方树,男,1996年出生,硕士研究生。主要研究方向为锂离子电池安全性。E-mail:S20193071172@cau.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFE0100200)和国家自然科学基金(51706117)资助项目

Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles

JIANG Fachao1, ZHANG Fangshu1,2, XU Chengshan1,2, LI Cheng2, WANG Shuyang3, REN Yi3, FENG Xuning2   

  1. 1. College of Engineering, China Agricultural University, Beijing 100083;
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084;
    3. Battery Research Department, New Energy Development Institute, FAW, Jilin 130011
  • Received:2020-07-05 Revised:2021-03-05 Online:2021-09-15 Published:2021-09-15

摘要: 动力电池的安全问题始终阻碍着电动汽车的推广,而热失控是安全问题的主因。锂离子电池在极端滥用条件下会发生热失控,同时热失控的能量会引发模组乃至系统的热蔓延。目前,单体热失控及模组热蔓延的机理被广泛研究,有关系统层级的热蔓延研究还较少。为研究电池系统热蔓延的机理,进行电池系统热蔓延试验。根据试验中系统热失控能量释放的剧烈程度,将电池系统热蔓延分为三个阶段:始发模组内热蔓延、模组间热蔓延和轰燃。此外,根据模组的不同受热情况,模组内热蔓延的规律可总结为顺序蔓延、同步蔓延和倒序蔓延三种模式。最终,结合蔓延表征结果和电池系统结构,发现液冷板对系统蔓延路径起到导引作用,以及当系统上盖破损后,电池热失控时会伴随着火焰,进而加速系统热蔓延过程,同时还验证了空气间隙对热蔓延的延缓作用。研究揭示了电池系统热蔓延的特征,为电池系统的安全性设计提供了依据。

关键词: 锂离子电池, 电池系统, 热失控, 电池安全, 储能

Abstract: Battery safety problem, which is resulted by thermal runaway, still hinders the wider market penetration of electric vehicles. Thermal runaway will be initiate when battery exposed in abuse conditions, then the amounts of heat are released, resulting the thermal runaway propagation. Although the mechanism of thermal runaway and thermal runaway propagation is well documented, most of researches base on cell and module. For exploring the thermal runaway propagation mechanism of pack, a thermal runaway propagation test is conducted for pack. According to the level of energy release, the thermal runaway propagation of system is divided into three phases:the propagation within module, the propagation between modules and the deflagration. Additionally, modals have been concluded from test data that include the ordered propagation, the synchronous propagation and the reversal propagation. The mechanism of thermal runaway propagation is revealed considering the propagation results and pack construction. The liquid cooling plate have a guiding effect on the thermal runaway propagation path. The loss of pack integration is dangerous, because it leads to high-potential combustion. The air gap can mitigate thermal runaway propagation. Overall, the characterization and mechanism of thermal runaway propagation of system is revealed through above analyzes, and the results provides a basis for the safety design of pack.

Key words: lithium-ion batteries, battery pack, thermal runaway, battery safety, energy storage

中图分类号: