• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 164-172.doi: 10.3901/JME.2025.12.164

• 材料科学与工程 • 上一篇    

扫码分享

基于被动视觉的窄间隙振摆动热丝GTAW焊缝跟踪系统设计

朱明, 翁军, 朱珍文, 杨彬晖, 张刚, 石玗   

  1. 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
  • 收稿日期:2024-08-12 修回日期:2024-12-31 发布日期:2025-08-07
  • 作者简介:朱明,男,1984年出生,博士,研究员。主要从事先进焊接方法及自动化、激光增材与再制造领域的科研与教学工作。E-mail:zhumings@yeah.net
  • 基金资助:
    国家自然科学基金(52065041)、中国-乌克兰政府间科技交流、甘肃省教育厅“双一流”科研重点(GSSYLXM-03)、甘肃省兰州理工大学红柳优青和甘肃省优秀博士生(23JRRA771)资助项目。

Design of a Narrow Gap Oscillating Hot Wire GTAW Seam Tracking System Based on Passive Vision

ZHU Ming, WENG Jun, ZHU Zhenwen, YANG Binhui, ZHANG Gang, SHI Yu   

  1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050
  • Received:2024-08-12 Revised:2024-12-31 Published:2025-08-07

摘要: 窄间隙振摆动热丝GTAW具有高效、绿色、优质等特点,在LNG储罐内罐立缝的焊接中已可以取代手工电弧焊并实现了示范应用。但在实际生产中,仍需要熟练焊工全程进行焊接位置的实时调整与控制。为了避免人工焊缝跟踪的不稳定性、提高焊接过程的自动化程度,提出基于被动视觉的坡口与电弧位置检测方法,并利用建立的光学系统及自适应图像特征增强算法获得焊接过程的高动态范围成像,通过检测钨极摆动时两侧的停留位置计算出钨极过零点时的中心位置,再与同步检测的窄间隙坡口中心位置进行实时比对,获得电弧零点位置的偏差信息,据此结合建立的模糊控制算法实现焊接过程电弧位置的实时跟踪与控制。试验结果表明:建立的光学系统可以有效地实现焊接过程的被动视觉图像采集,并通过自适应算法可以将图像灰度差从40左右提高至120附近;通过检测焊枪摆动时的左右停留位置,利用建立的电弧中心位置特征提取算法可以在一个摆动周期内(1.13 s)获得两次焊枪中心位置,单次准确率在80%以上;通过与检测的坡口中心位置进行对比,利用建立的模糊控制规则,在工艺试验中可以实现焊接过程的实时跟踪与控制,误差精度控制在±0.3 mm。

关键词: 焊缝跟踪, 被动视觉, 窄间隙, 振摆动热丝GTAW

Abstract: Narrow gap oscillating hot-wire gas tungsten arc welding (GTAW) is known for its efficiency, environmental friendliness, and high quality. It has been demonstrated to replace manual arc welding for welding the seams of the inner tank. Taking the example of a LNG storage tank, with individual inner shell seam lengths of approximately 12 meters, deviations in welding position due to beveling and assembly can lead to defects like incomplete fusion on the sidewall. Therefore, skilled welders are still required for real-time adjustment and control of the welding position during actual production. In order to avoid the instability of manual weld tracking and improve the automation of the welding process, a passive visual-based method for detecting bevels and arc positions is proposed. An optical system is established, along with an adaptive image feature enhancement algorithm to obtain high dynamic range images of the welding process. By detecting the stop positions on both sides of the tungsten electrode during oscillation, the central position of the tungsten electrode at the zero point is calculated. This information is then compared in real-time with the detected center position of the narrow gap bevel. Using a developed fuzzy control algorithm, real-time tracking and control of the arc position during the welding process is achieved. Experimental results show that:The established optical system can effectively capture passive visual images of the welding process, and the adaptive algorithm can increase the image grayscale difference from around 40 to approximately 120; By detecting the left and right stop positions during the welding gun oscillation and utilizing a feature extraction algorithm for the arc center position, the center position of the welding gun can be obtained twice within one oscillation cycle (1.13 seconds), with a single accuracy rate of over 80%; By comparing with the detected bevel center position, and using the established fuzzy control rules, real-time tracking and control of the welding process can be achieved in process trials, with an error accuracy controlled within ±0.3 mm.

Key words: weld seam tracking, passive vision, narrow gap, pulsed hot wire GTAW

中图分类号: