• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 127-140.doi: 10.3901/JME.2025.12.127

• 材料科学与工程 • 上一篇    

扫码分享

TC21钛合金线性摩擦焊接头高韧性化机理研究

赵鹏康1,2, 洪振宇1, 张敏3, 肖旭东1, 袁启龙1, 陶军4, ANTUNES Elsa5, 麻宁绪2   

  1. 1. 西安理工大学教育部数控机床及机械制造装备集成重点实验室 西安 710048;
    2. 大阪大学接合科学研究所 大阪 567-0047 日本;
    3. 西安理工大学材料科学与工程学院 西安 710048;
    4. 中国航空制造技术研究院航空焊接与连接技术航空科技重点实验室 北京 100024;
    5. 詹姆斯库克大学科学与工程学院 昆士兰 4811 澳大利亚
  • 收稿日期:2024-09-16 修回日期:2025-02-11 发布日期:2025-08-07
  • 作者简介:赵鹏康,男,1983年出生,博士,副教授。主要研究方向为金属材料摩擦焊接头组织性能关系。E-mail:zhaopengkang@xaut.edu.cn
  • 基金资助:
    国家自然科学基金面上(52274395)、航空科学基金(ASFC-202200110T6001)、国家留学基金(CSC202208615069)、教育部数控机床及机械制造装备集成重点实验室开放课题(SKJC-2022-05)、陕西省重点研发计划(2023-YBGY-347)、陕西省自然科学基金(2023-JC-YB-382)、西安市碑林区应用技术研发(GX2447)、西安理工大学国际科合作促进(2024GHCJ009)和企业委托技术开发(2024610002014495, 2024610002012264, 2025610002000945)资助项目。

Toughening Mechanism of TC21 Titanium Alloy Linear Friction Welded Joints

ZHAO Pengkang1,2, HONG Zhenyu1, ZHANG Min3, XIAO Xudong1, YUAN Qilong1, TAO Jun4, ANTUNES Elsa5, MA Ningshu2   

  1. 1. Key Lab. of CNC Machine Tool and Machinery Manufacturing Equipment Integration of the Ministry of Education, Xi'an University of Technology, Xi'an 710048;
    2. Joining and Welding Research Institute (JWRI), Osaka University, Osaka 567-0047, Japan;
    3. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048;
    4. Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024;
    5. College of Science and Engineering, James Cook University, Townsville 4811, Australia
  • Received:2024-09-16 Revised:2025-02-11 Published:2025-08-07

摘要: 线性摩擦焊(Linear friction welding,LFW)是实现钛合金高质量连接的有效方法。然而,接头焊缝区等轴晶及晶内球状弥散颗粒在提高接头强塑性的同时显著降低了接头韧性,TC21焊态接头韧性(16.7±0.5 J/cm2)仅为母材韧性(62±1 J/cm2)的27%。前期研究表明,片层交错网篮组织有助于提高接头韧性。因此,本研究通过系统探讨不同退火热处理条件下接头焊缝区微观组织演变,旨在获得交错网篮组织结构。试验结果表明,在四种退火条件中,双重低温退火能够有效调控接头组织,使接头韧性从母材的27%大幅提升至81%。拉伸试验后,试样断裂于接头附近母材区域,硬度分布由马鞍状转变为均匀稳定态。接头焊缝区等轴晶粒和原始晶界发生弱化,弥散晶粒转变为片层交错网篮组织,α相比例从35%升高至82%,小角度晶界比例从64.2%下降至38.8%,动态再结晶比例从20.2%增加至43.5%,史密斯因子在0.4~0.5区间比例从64.6%下降至34.3%。以上结果均表明接头由解理断裂模式转变为韧性断裂模式,从本质上揭示了接头高韧性化内在机制,为钛合金高强韧性连接技术的优化提供了理论依据和技术支撑。

关键词: TC21钛合金, 线性摩擦焊, 双重低温退火, 组织与织构, 高韧性机制

Abstract: Linear friction welding (LFW) is an effective method for achieving high-quality joints in titanium alloys. However, the presence of equiaxed grains and spherical dispersoids in the weld zone leads to a substantial reduction in joint toughness, despite an improvement in strength and plasticity. The as welded joint toughness is 16.7±0.5 J/cm2, which is only 27% of the TC21 base material toughness (62±1 J/cm2). Previous research has indicated that a staggered basket-weave microstructure significantly enhances joint toughness. Accordingly, this study systematically investigates the microstructural evolution of the weld zone under various annealing heat treatment conditions, with the goal of achieving the staggered basket-weave structure. The experimental results show that, among the four annealing conditions, dual low-temperature annealing effectively modulates the joint microstructure, resulting in a substantial increase in joint toughness from 27% of the base material to 81%. Post-tensile testing, fracture occurs in the base material near the joint, and the hardness distribution transitions from a saddle-shaped profile to a uniform stable state. The equiaxed grains and original grain boundaries in the joint weld area weaken, and the dispersed grains transform into a layered interlaced basket structure. The proportion of alpha phase increases from 35% to 82%, the proportion of small angle grain boundaries decreases from 64.2% to 38.8%, the proportion of dynamic recrystallization increases from 20.2% to 43.5%, and the Smith factor decreases from 64.6% to 34.3% in the range of 0.4-0.5. The above results indicate that the joint has shifted from cleavage fracture mode to ductile fracture mode, fundamentally revealing the inherent mechanism of high toughness of the joint and providing theoretical basis and technical support for the optimization of high-strength and toughness connection technology for titanium alloys.

Key words: TC21 titanium alloy, linear friction welding (LFW), double low-temperature annealing, microstructure and texture, toughness enhancement mechanism

中图分类号: