• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 26-38.doi: 10.3901/JME.2025.12.026

• 仪器科学与技术 • 上一篇    

扫码分享

面向轴承故障诊断的无监督噪声自适应匹配追踪算法展开去噪网络

秦毅1, 杨瑞1,2, 赵丽娟1, 毛永芳3   

  1. 1. 重庆大学机械与运载工程学院 重庆 400044;
    2. 重庆中车时代电气技术有限公司 重庆 401120;
    3. 重庆大学自动化学院 重庆 400044
  • 收稿日期:2024-10-15 修回日期:2025-03-13 发布日期:2025-08-07
  • 作者简介:秦毅,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为机械故障诊断和数字孪生。E-mail:qy_808@cqu.edu.cn;毛永芳(通信作者),女,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为故障诊断与预测。E-mail:yfm@cqu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52175075)。

Unsupervised Noise-adaptive Unrolled Matching Pursuit Denoising Network for Bearing Fault Diagnosis

QIN Yi1, YANG Rui1,2, ZHAO Lijuan1, MAO Yongfang3   

  1. 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. Chongqing CRRC Times Electric Technology Co., Ltd., Chongqing 401120;
    3. School of Automation, Chongqing University, Chongqing 400044
  • Received:2024-10-15 Revised:2025-03-13 Published:2025-08-07

摘要: 滚动轴承是重要的支撑部件,容易发生故障,迫切需要对其进行故障诊断。但是采集的轴承振动信号中存在噪声,制约了诊断精度的提升。针对基于信号处理、深度学习及稀疏算法展开的去噪方法存在的自适应性差、可解释性低、有监督训练等问题,设计DCT-Laplace字典以表示信号的谐波和冲击成分;提出去冲击区域的小波变换噪声估计方法以确定噪声的标准差;然后通过比较噪声和重构残差的功率自适应地确定稀疏算法展开网络的展开数,进而构建一种无监督噪声自适应的匹配追踪算法展开去噪网络;最后将去噪结果输入到多层迭代软阈值算法网络实现轴承的故障诊断。将所提方法应用于两个滚动轴承故障诊断试验,并与其他典型去噪方法进行对比。试验结果验证了所提方法能有效地去除信号中的噪声及保留故障特征,因而提高了噪声下故障诊断的精度。

关键词: 稀疏表示, 算法展开, 信号去噪, 可解释网络, 故障诊断

Abstract: Rolling bearings are important support components that are prone to failures, thus it is an urgent need for their fault diagnosis. However, the interference from noise in the collected bearing vibration signals restricts the improvement of diagnostic accuracy. Aiming at the problems of poor adaptability, low interpretability and supervised training of the denoising methods based on signal processing, deep learning and sparse algorithm unrolling, a DCT-Laplace dictionary is firstly designed to represent the harmonic and impulse components; secondly, a removing impulse range wavelet transform noise estimation method is proposed to determine the standard deviation of the noise; thirdly, the unrolling number of the sparse algorithm unrolling network is adaptively determined by comparing the power of the noise and the reconstructed residuals, then an unsupervised noise-adaptive unrolled matching pursuit unsupervised denoising network based on the sparse algorithm unrolling is proposed; finally, the denoising results are then fed into the multi-layer iterative soft-thresholding algorithm network to realize the fault diagnosis of bearings. The proposed method is applied to two rolling bearing fault diagnosis experiments, and compared with other typical denoising methods. Experiment results show that the proposed method can effectively remove the noise from the signal and retain the fault features, hence improving the accuracy of fault diagnosis under noise.

Key words: sparse representation, algorithm unrolling, signal denoising, explainable network, fault diagnosis

中图分类号: