[1] KOJIMA F. Inverse problem for internal temperature distribution of metal products using pulser-receiver EMAT[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(4):1451-1457. [2] OUYANG Q, HU M, ZHANG X, et al. Study on electromagnetics ultrasonic testing method for determining solidified shell thickness during continuous casting[C]//The 30th Chinese Control and Decision Conference (2018CCDC), June 9-11, 2018, Shenyang:IEEE, 2018:913-918. [3] 石文泽,陈巍巍,陈尧,等.基于脉冲压缩技术的高温连铸坯壳厚度测量EMAT设计及应用[J].仪器仪表学报, 2019, 40(8):119-130. SHI Wenze, CHEN Weiwei, CHEN Yao, et al. Design and application of an EMAT for solidification shell thickness detection in continuous casting slab based on the pulse compression technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(8):119-130. [4] ROMMELER A, FURRER R, SENNHAUSER U, et al. Air coupled ultrasonic defect detection in polymer pipes[J]. NDT&E International, 2019, 102:244-253. [5] 周正干,马保全,孙志明,等.空气耦合超声检测中脉冲压缩方法的参数选优[J].北京航空航天大学学报, 2015, 41(1):1-7. ZHOU Zhenggan, MA Baoquan, SUN Zhiming, et al. Parameter optimization of pulse compression method in air-coupled ultrasonic testing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):1-7. [6] 曾伟,王海涛,田贵云,等.基于能量分析的激光超声波缺陷检测研究[J].仪器仪表学报, 2014, 35(3):650-655. ZENG Wei, WANG Haitao, TIAN Guiyun, et al. Research on laser ultrasonic defect signal detection technology based on energy analysis[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):650-655. [7] 孙广开,曲道明,周正干.机器人辅助激光超声检测系统及参量匹配方法[J].仪器仪表学报, 2017, 38(8):1961-1969. SUN Guagkai, QU Daoming, ZHOU Zhenggan. Robot assistant laser ultrasonic test system and its parameter matching method[J]. Chinese Journal of Scientific Instrument, 2017, 38(8):1961-1969. [8] 何存富,邓鹏,吕炎,等.一种高信噪比电磁声表面波传感器及在厚壁管道检测中的应用[J].机械工程学报, 2017, 53(4):59-66. HE Cunfu, DENG Peng, LÜ Yan, et al. A new surface wave EMAT with high SNR and the application for defect detection in thick-walled pipes[J]. Journal of Mechanical Engineering, 2017, 53(4):59-66. [9] 黄松岭,王哲,王珅,等.管道电磁超声导波技术及其应用研究进展[J].仪器仪表学报, 2018, 39(3):1-12. HUANG Songling, WANG Zhe, WANG Shen, et al. Review on advances of pipe electromagnetic ultrasonic guided waves technology and its application[J]. Chinese Journal of Scientific Instrument, 2018, 39(3):1-12. [10] 蔡瑞,李勇,刘天浩,等.金属小径管损伤电磁超声导波检测的高效混合仿真方法及导波换能器可行性研究[J].机械工程学报, 2020, 56(10):34-41. CAI Rui, LI Yong, LIU Tianhao, et al. A hybrid method for efficient simulation and feasibility study of guided-wave electromagnetic acoustic transducers for inspection of metallic tubes with small diameters[J]. Journal of Mechanical Engineering, 2020, 56(10):34-41. [11] 郑阳,周进节,张宗健,等.电磁超声检测频率自适应优化方法研究[J].机械工程学报, 2019, 55(14):11-18. ZHENG Yang, ZHOU Jinjie, ZHANG Zongjian, et al. Research on frequency adaptive optimization method of electromagnetic acoustic testing[J]. Journal of Mechanical Engineering, 2019, 55(14):11-18. [12] IIZUKA Y, AWAJIYA Y. High sensitivity EMAT system using chirp pulse compression and its application to crater end detection in continuous casting[J]. Journal of Physics:Conference Series, 2014, 520:0120111-0120114. [13] COLE P T. The generation and reception of ultrasonic surface waves in mild steel at high temperatures[J]. Ultrasonics, 1978, 16(4):151-155. [14] BURROWS S E, FAN Y, DIXON S. High temperature thickness measurements of stainless steel and low carbon steel using electromagnetic acoustic transducers[J]. NDT&E International, 2014, 68:73-77. [15] KOGIA M, GAN T, BALACHANDRAN W, et al. High temperature shear horizontal electromagnetic acoustic transducer for guided wave inspection[J]. Sensors, 2016, 16(4):582-598. [16] LUNN N, DIXON S, POTTER M D G. High temperature EMAT design for scanning or fixed point operation on magnetite coated steel[J]. NDT&E International, 2017, 89:74-80. [17] REN W, XU K, DIXON S, et al. A study of magnetostriction mechanism of EMAT on low-carbon steel at high temperature[J]. NDT&E International, 2019, 101:34-43. [18] 邱佳明.用于高温管道测厚的脉冲电磁铁电磁超声换能器研究[D].哈尔滨:哈尔滨工业大学, 2018. QIU Jiaming. Design of pulsed electromagnet EMAT using for high temperature pipeline thickness gauging[D]. Harbin:Harbin Institute of Technology, 2018. [19] 刘会彬,郑阳,王锋淮,等.温度对奥氏体不锈钢材料电磁超声检测的影响研究[J].测试技术学报, 2018, 32(4):329-334. LIU Huibin, ZHENG Yang, WANG Fenghuai, et al. Effect of temperature on electromagnetic acoustic transducer inspecting of austenitic stainless steel[J]. Journal of Test and Measurement Technology, 2018, 32(4):329-334. [20] WU Yunxin, HAN Lei, GONG Hai, et al. A modified model for simulating the effect of temperature on ultrasonic attenuation in 7050 aluminum alloy[J]. AIP Advances, 2018, 8(8):0850031-08500314. [21] RAO N, MEHRA S. Medical ultrasound imaging using pulse compression[J]. Electronics Letters, 1993, 29(8):649-951. [22] HO K S, GAN T H, BILLSON D R, et al. Application of pulse compression signal processing techniques to electromagnetic acoustic transducers for noncontact thickness measurements and imaging[J]. Review of Scientific Instruments, 2005, 76(5):549021-549028. [23] 周正干,张宏宇,魏东.脉冲压缩技术在超声换能器激励接收方法中的应用[J].中国机械工程, 2010, 21(17):115-119 ZHOU Zhenggan, ZHANG Hongyu, WEI Dong. Applications of pulse compression in ultrasonic transducers excitation and receiving[J]. China Mechanical Engineering, 2010, 21(17):115-119. [24] HAO K S, HUANG S L, ZHAO W, et al. Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing[J]. Journal of Central South University of Technology, 2011, 18(3):749-754. [25] SHI Wenze, WU Yunxin, GONG Hai, et al. Enhancement of lift-off performance and conversion efficiency using a copper backplate for a spiral coil EMAT in generating and receiving shear waves[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 56(2):173-194. [26] KOZYREFF G. Applied solid mechanics[M]. London:Cambridge University Press, 2009. [27] WANG Shujuan, LI Zhichao, LI Pengzhan, et al. Numerical and experimental evaluation of the receiving performance of meander-line coil EMATs[J]. Nondestructive Testing and Evaluation, 2014, 29(4):269-282. |