• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (12): 51-61.doi: 10.3901/JME.2021.12.051

• 特邀专栏:汽车-道路相互作用动力学前沿问题 • 上一篇    下一篇

扫码分享

电动汽车机-电-路耦合系统建模及动力学分析

李韶华1, 罗海涵1,2, 冯桂珍1,2, 杨建森3   

  1. 1. 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043;
    2. 石家庄铁道大学机械工程学院 石家庄 050043;
    3. 中汽研(天津)汽车工程研究院有限公司 天津 300300
  • 收稿日期:2020-10-15 修回日期:2021-03-05 出版日期:2021-08-31 发布日期:2021-08-31
  • 通讯作者: 罗海涵(通信作者),男,1994年出生。主要研究方向为车辆系统动力学与控制。E-mail:2237591321@qq.com
  • 作者简介:李韶华,女,1973年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制。E-mail:lishaohua@stdu.edu.cn;冯桂珍,女,1978年出生,副教授。主要研究方向为车辆系统动力学与控制。E-mail:fenggz@stdu.edu.cn;杨建森,男,1984年出生,高级工程师。主要研究方向为电动车辆底盘设计与控制。E-mail:yangjiansen@catarc.ac.cn
  • 基金资助:
    国家自然科学基金资助项目(11972238)

Modeling and Dynamic Analysis of Mechanic-electro-road Coupling System of Electric Vehicles

LI Shaohua1, LUO Haihan1,2, FENG Guizhen1,2, YANG Jiansen3   

  1. 1. State Key Laboratory of Structural Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043;
    2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043;
    3. CATARC(Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300300
  • Received:2020-10-15 Revised:2021-03-05 Online:2021-08-31 Published:2021-08-31

摘要: 轮毂电机驱动的电动汽车簧下质量大导致轮胎动载荷增加,电机电磁力也会加剧车辆振动,同时车辆和道路通过动态轮胎力相互耦合。为了探究电动汽车的振动机理,建立电动汽车机-电-路耦合系统非线性动力学模型,考虑悬架刚度、阻尼和轮胎刚度的非线性,并在传统路面不平顺激励的基础上叠加了轮毂电机的电磁激励和车路耦合引起的路面二次激励。解析推导电机电磁激励的表达式,建立轮毂电机三维实体有限元模型,计算磁通分布及电磁转矩,验证理论结果的有效性。利用模态叠加法推导了两端简支黏弹性地基梁的垂向位移响应,将其作为路面二次激励引入耦合系统模型。以车身加速度、悬架动挠度、轮胎力和轮胎四次幂合力作为评价指标,分析电磁激励、路面二次激励、车速和车辆非线性对车辆平顺性和道路友好性的影响。研究发现,车辆非线性对车辆振动和道路友好性的影响最大,电磁激励的影响次之,路面二次激励的影响较小;车辆高速行驶时,车身振动加剧且车辆载荷对道路损伤的影响更为显著;路面越平坦,以上三个因素的影响越大。所提出的车辆与电机、道路一体化建模思路,可为电动汽车动态设计和道路友好性研究提供借鉴。

关键词: 电动汽车, 电磁激励, 路面二次激励, 平顺性, 道路友好性

Abstract: The increase in the unsprung mass of the electric vehicle driven by the in-wheel motor enlarges the tire dynamic loads, and the electromagnetic force of the motor will aggravate the vehicle vibration too. In the meanwhile, the vehicle and the road are interacted with each other through dynamic tire forces. In order to explore the vibration mechanism of electric vehicles, a non-linear dynamic model of the mechanic-electro-road coupling system for the electric vehicle is established, which takes into account the non-linearity of suspension stiffness, damping and tire stiffness. Based on the traditional road surface irregularity excitation, the electromagnetic excitation of the in-wheel motor and the road secondary excitation caused by the vehicle-road coupling are also considered. The expression of the electromagnetic excitation of the motor is analytically deduced, the three-dimensional solid finite element model of the in-wheel motor is established, the magnetic flux distribution and electromagnetic torque are calculated, and the validity of the theoretical results is verified. The modal superposition method is used to derive the vertical displacement response of the viscoelastic beam on the foundation simply supported at both ends, which is the secondary excitation of the road considered in the coupled system model. Taking vehicle body acceleration, suspension dynamic deflection, tire force and tire quartic force as evaluation indicators, the effects of electromagnetic excitation, road secondary excitation, vehicle driving speed and vehicle nonlinearity on vehicle vibration and road friendliness are analyzed. It is shown that vehicle nonlinearity has the greatest impact on vehicle vibration and road friendliness, followed by electromagnetic excitation, and road surface secondary excitation; When the vehicle is running at higher speed, the vehicle body vibration intensifies and the impact of vehicle load on road damage is more significant; On the flatter road, the influences of the above three factors are more obvious. The proposed vehicle and motor, road and integrated modeling ideas can provide reference for the dynamic design of electric vehicles and road-friendliness research.

Key words: electric vehicle, electromagnetic excitation, secondary excitation of road surface, ride comfort, road friendliness

中图分类号: