• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (22): 153-164.doi: 10.3901/JME.2019.22.153

• 主动安全控制技术 • 上一篇    下一篇

扫码分享

轮毂电机驱动汽车侧向稳定性底盘协同控制

张利鹏1, 任晨辉1, 李韶华2   

  1. 1. 燕山大学河北省特种运载装备重点实验室 秦皇岛 066004;
    2. 省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043
  • 收稿日期:2019-08-22 修回日期:2019-10-16 出版日期:2019-11-20 发布日期:2020-02-29
  • 通讯作者: 李韶华(通信作者),女,1973年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学与控制。E-mail:lishaohua@stdu.edu.cn
  • 作者简介:张利鹏,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为智能车辆动力学与控制、新能源汽车复合传动、驾驶员认知与人机共驾。E-mail:evzlp@ysu.edu;任晨辉,男,1996年出生,硕士研究生。研究方向为智能车辆动力学与控制。E-mail:cren_0321@qq.com
  • 基金资助:
    国家自然科学基金(51775478)和河北省交通安全与控制重点实验室开放课题(JTKY2019006)资助项目。

Chassis Cooperative Control for Improving Lateral Stability of In-wheel Motors Drive Electric Vehicle

ZHANG Lipeng1, REN Chenhui1, LI Shaohua2   

  1. 1. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004;
    2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang 050043
  • Received:2019-08-22 Revised:2019-10-16 Online:2019-11-20 Published:2020-02-29

摘要: 轮毂电机驱动汽车可以通过差动驱动抑制车辆横摆和侧倾运动,从而提高车辆侧向稳定性,但受轮毂电机力矩和地面附着力约束的限制,作用效果薄弱。为提升车辆侧向稳定性控制效果,提出综合差动驱动、主动转向和主动悬架的车身横摆与侧倾稳定性底盘协同控制方法。根据轮毂电机驱动汽车特点,对其侧向失稳机理进行分析,基于模型预测控制设计前轮主动转向控制器;利用所提出的变系数指数趋近率求解期望横摆控制力矩,基于最优控制算法计算侧倾控制力矩;最后,构建集成差动驱动、主动转向和主动悬架的侧向稳定性控制器并完成整车侧向稳定性协同控制仿真验证。研究表明,所提出的底盘协同侧向稳定性控制方法可以有效控制车辆的横摆和侧倾运动,使其收敛于理想控制域,为轮毂电机驱动车辆的主动安全性控制提供了理论支持。

关键词: 电动汽车, 差动驱动, 主动转向, 主动悬架, 侧向空间稳定性, 底盘协同控制

Abstract: The yaw and roll movement of in-wheel motors drive electric vehicles can be suppressed by differential drive, which can improve the vehicle lateral stability. However, due to the constraints of in-wheel motors control torque and road adhesion force, the control capability is weak. In order to improve the ability of lateral stability control, the chassis cooperative control method integrated differential drive, active steering and active suspensions is proposed. According to the characteristics of in-wheel motors drive electric vehicles, the lateral instability mechanism is analyzed. The front wheel active steering controller is designed based on the model predictive control. The yaw stability control torque are solved by the proposed variable coefficient exponential approach rate, and the roll control torque is calculated by optimal control. Finally, the lateral stability controllers of integrated differential drive, active steering and active suspension are constructed, and the simulation verification of vehicle lateral stability coordination control is further completed. The research shows that the proposed coordinated lateral stability control method can effectively control the yaw and roll motion of the vehicle, and converge them in the ideal control domains, which provides theoretical support for the active safety control of the in-wheel motors drive electric vehicles.

Key words: electric vehicle, differential drive, active steering, active suspension, lateral stability, chassis cooperative control

中图分类号: