[1] GABB T P, TELESMAN J, KANTZOS P T, et al. Effects of high temperature exposures on fatigue life of disk superalloys[C]//NASA Glenn Research Center. 10th International Symposium on Superalloys. Sep. 19-23, 2004, U.S.A.:TMS, 2014:269-274.
[2] YANG Hongqin, BAO Rui, ZHANG Jianyu, et al. Crack growth behaviour of a nickel-based powder metallurgy superalloy under elevated temperature[J]. International Journal of Fatigue, 2011, 33(4):632-641.
[3] NA S, YOON D, KIM J, et al. An evaluation of the fatigue crack propagation rate for powder metallurgical nickel-based superalloys using the dcpd method at elevated temperatures[J]. International Journal of Fatigue, 2017, 101:27-35.
[4] BOUARD J L, GALLERNEAU F, PAULMIER P, et al. A phenomenological model to predict the crack growth in single crystal superalloys at high temperature[J]. International Journal of Fatigue, 2012, 38(5):130-143.
[5] TELESMAN J, SMITH T M, GABB T P, et al. Relationship between unusual high-temperature fatigue crack growth threshold behavior in superalloys and sudden failure mode transitions[J]. Materials Science & Engineering A, 2017, 708.
[6] JIANG Rong, BULL D J, PROPRENTNER D, et al. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M NI-based superalloy:From 2d to 3d assessment[J]. International Journal of Fatigue, 2017, 99:175-186.
[7] TELESMAN J, GABB T P, GHOSN L J. Separating the influence of environment from stress relaxation effects on dwell fatigue crack growth in a nickel-base disk alloy[C]//Mark Hardy. the 13th International Symposium of Superalloys. U.S.A. Sept. 16, 2016:Wiley, 2016:549-560.
[8] LEE S Y,LIAW P K,LU Y L,et al. Elevated-temperature creep-fatigue crack-growth behavior of nickel-based HAYNES® R-41, HAYNES® 230® and HASTELLOY® X alloys[C]//Reed.The the 11th International Symposium on Superalloys. Sept. 14, 2008, U.S.A. Wiley, 2008:509-514.
[9] ROZMAN K A, KRUZIC J J, HAWK J A. Fatigue crack growth behavior of nickel-base superalloy haynes 282 at 550-750℃[J]. Journal of Materials Engineering & Performance, 2015, 24(8):2841-2846.
[10] DEFRESNE A, REMY L. Fatigue behaviour of cmsx 2 superalloy
[001] single crystals at high temperature i:Low cycle fatigue of notched specimens[J]. Materials Science & Engineering A, 1990, 129(1):45-53.
[11] AI S H, LUPINC V, ONOFRIO G. Influence of precipitate morphology on high temperature fatigue crack growth of a single crystal nickel base superalloy[J]. Scripta Metallurgica Et Materialia, 1993, 29(11):1385-1390.
[12] CHAN K S, HACK J E, LEVERANT G R. Fatigue crack growth in mar-m200 single crystals[J]. Metallurgical and Materials Transactions A, 1987, 18(4):581-591.
[13] CHAN K S, LEVERANT G R. Elevated-temperature fatigue crack growth[J]. Metallurgical and Materials Transactions A, 1987, 18(4):593-602.
[14] HE Xiaohua, ZHANG Yangyang, SHI Huiji, et al. Influence of orientation and temperature on the fatigue crack growth of a nickel-based directionally solidified superalloy[J]. Materials Science & Engineering A, 2014, 618:153-160.
[15] YOON K B, PARK T G, SAXENA A. Elevated temperature fatigue crack growth model for DS-GTD-111[J]. Strength Fracture & Complexity, 2006, 4(1):35-40.
[16] 《工程材料实用手册》 委员会. 工程材料实用手册.第2卷,变形高温合金,铸造高温合金[M]. 2版. 北京:中国标准出版社, 2002. Practical Handbook of Engineering Materials Committee. Practical handbook of engineering materials. Volume 2, deformed superalloy casting superalloy[M]. 2nd ed Beijing:China Standard Press, 2002.
[17] Standard A. E647. Standard test method for measurement of fatigue crack growth rates[S]. Annual Book of ASTM Standards, Section Three:Metals Test Methods and Analytical Procedures, 2002.
[18] 方钦志,张石山,赵明嗥,等. 疲劳裂纹扩展柔度法测量系统研究[J]. 实验力学, 2000, 15(1):110-114. FANG Qinzhi, ZHANG Shishan, ZHAO Minghao, et al. Research on the measuring system for fatigue crack growth investigation by compliance method[J]. Journal of Experimental Mechanics, 2000, 15(1):110-114.
[19] ZHANG Yangyang, SHI Huiji, GU Jialin, et al. Orientation and temperature dependences on fatigue crack growth (fcg) behavior of a ni-base directionally solidified superalloy[C]//International Conference on Fracture, June 16-21, 2013, Beijing, China:Siemens, 2013:2537-2546.
[20] GOMEZ M P, ANDERSON W E A. A rational analytic theory of fatigue[J]. Trend in Engineering, 1961, 1:13.
[21] YOKOBORI T, YOKOBORI A T, KAMEI A. Dislocation dynamics theory for fatigue crack growth[J]. International Journal of Fracture, 1975, 11(5):781-788.
[22] FINDLEY K O, EVANS J L, SAXENA A. A critical assessment of fatigue crack nucleation and growth models for ni-and ni, fe-based superalloys[J]. International Materials Reviews, 2011, 56(1):49-71.
[23] STARINK M J, REED P A S. Thermal activation of fatigue crack growth:analysing the mechanisms of fatigue crack propagation in superalloys[J]. Materials Science & Engineering A, 2008, 491(1-2):279-289. |