[1] DONG J,YUAN C,STORI J A,et al. Development of a high-speed 3-axis machine tool using a novel parallel-kinematics X-Y table[J]. International Journal of Machine Tools and Manufacture,2004,44(12-13):1355-1371.
[2] LIU X J,WANG Q M,WANG J J. Kinematics,dynamics and dimensional synthesis of a novel 2-DOF translational manipulator[J]. Journal of Intelligent and Robotic Systems,2005,41(4):205-224.
[3] LIU X J,WANG J,PRITSCHOW G. On the optimal kinematic design of the PRRRP 2-DOF parallel mechanism[J]. Mechanism and Machine Theory,2006,41(9):1111-1130.
[4] WU J,WANG J,LI T,et al. Analysis and application of a 2-DOF planar parallel mechanism[J]. Journal of Mechanical Design,2007,129(4):434-437.
[5] KIM H S. Development of two types of novel planar translational parallel manipulators by using parallelogram mechanism[J]. Journal of the Korean Society for Precision Engineering,2007,24(8):50-57.
[6] HUANG T,LI Z,LI M,et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J]. Journal of Mechanical Design,2004,126(3):449-455.
[7] YANG Y,PENG Y,PU H,et al. Design of 2-degrees-of-freedom (DOF) planar translational mechanisms with parallel linear motion elements for an automatic docking device[J]. Mechanism and Machine Theory,2018,121:398-424.
[8] LI Y,XU Q. Development and assessment of a novel decoupled XY parallel micropositioning platform[J]. IEEE/ASME Transactions on Mechatronics,2010,15(1):125-135.
[9] LI Y,HUANG J,TANG H. A compliant parallel XY micromotion stage with complete kinematic decoupling[J]. IEEE Transactions on Automation Science and Engineering,2012,9(3):538-553.
[10] AWTAR S,SLOCUM A H. Constraint-based design of parallel kinematic XY flexure mechanisms[J]. Journal of Mechanical Design,2007,129(8):816-830.
[11] HOWELL L L. Compliant mechanisms[M],New York:Wiley,2001.
[12] 余跃庆,徐齐平,周鹏. 复合载荷作用下柔顺机构的PR伪刚体新模型[J]. 机械工程学报,2013,49(15):9-14. YU Yueqing,XU Qiping,ZHOU Peng. New PR pseudo-rigid-body model of compliant mechanisms subject to combined loads[J]. Journal of Mechanical Engineering,2013,49(15):9-14.
[13] 陈贵敏,李端玲. 平面柔顺机构的自由度[J]. 机械工程学报,2010,46(13):48-53. CHEN Guimin,LI Duanling. Degree of freedom of planar compliant mechanisms[J]. Journal of Mechanical Engineering,2010,46(13):48-53.
[14] PEI X,YU J,ZONG G,et al. Design of compliant straight-line mechanisms using flexural joints[J]. Chinese Journal of Mechanical Engineering,2014,27(1):146-153.
[15] WANG N,LIANG X,ZHANG X. Pseudo-rigid-body model for corrugated cantilever beam used in compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2014,27(1):122-129.
[16] 于靖军,毕树生,宗光华,等. 基于伪刚体模型法的全柔性机构位置分析[J]. 机械工程学报,2002,38(2):75-78. YU Jingjun,BI Shusheng,ZONG Guanghua,et al. Kinematics analysis of fully compliant mechanisms using the pseudo-rigid-body model[J]. Journal of Mechanical Engineering,2002,38(2):75-78.
[17] VENKITESWARAN V K,SU H J. A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section[J]. Journal of Mechanical Design,2018,140(9):092305.
[18] CHEN G,MA F,HAO G,et al. Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model[J]. Journal of Mechanisms and Robotics,2019,11(1):011002.
[19] EDWARDS B T,JENSEN B D,HOWELL L L. A pseudo-rigid-body model for initially-curved pinned-pinned segments used in compliant mechanisms[J]. Journal of Mechanical Design,2001,123(3):464-472.
[20] 中国船舶工业集团公司,全国船用机械标准化技术委员会. 2007. GB/T 12777-2008,金属波纹管膨胀节通用技术条件[S]. 北京:中国标准出版社,2009. China State Shipbuilding Corporation Limited,National Marine Machinery Standardization Technical Committee. 2007. GB/T 12777-2008,General technical conditions for metal bellows expansion joints[S]. Beijing:China Standard Press,2009. |