[1] XU S, HU X, YANG Y, et al. Effect of carbon nanotubes and their dispersion on electroless Ni-P under bump metallization for lead-free solder interconnection[J]. Journal of Materials Science:Materials in Electronics. 2014, 25(6):2682-2691. [2] HUA L, CHAN Y, WU Y, et al. The determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations[J]. Journal of Hazardous Materials. 2009, 163(2-3):1360-1368. [3] GUO F, LUCAS J, SUBRAMANIAN K. Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non-composite solder joints[J]. Journal of Materials Science:Materials in Electronics, 2001, 12(1):27-35. [4] XU L, CHEN X, JING H, et al. Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders[J]. Materials Science & Engineering A, 2016, 667:87-96. [5] JING H, GUO H, WANG L, et al. Influence of Ag-modified graphene nanosheets addition into Sn-Ag-Cu solders on the formation and growth of intermetallic compound layers[J]. Journal of Alloys and Compounds, 2017, 702:669-678. [6] 张国尚, 荆洪阳, 徐连勇, 等. 纳米压痕法测量80Au/20Sn焊料热力性能[J]. 焊接学报, 2009(9):53-56. ZHANG Guoshang, JING Hongyang, XU Lianyong, et al. Measurement on thermal performance of 80Au/20Sn solder by nanoindentation[J]. Journal of Welding, 2009(9):53-56. [7] ROSHANGHIAS A, KOKABI A H, MIYASHITA Y, et al. Nanoindentation creep behavior of nanocomposite Sn-Ag-Cu solders[J]. Journal of Electronic Materials, 2012, 41(8):2057-2064. [8] 孔祥霞,孙凤莲,杨淼森,等. Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响[J]. 机械工程学报, 2017, 53(2):53-60. KONG Xiangxia, SUN Fenglian, YANG Miaosen, et al. Effect of Bi and Ni concentration on the creep behavior of the bulks of Cu/SAC/Cu micro solder joints[J]. Journal of Mechanical Engineering, 2017, 53(2):53-60. [9] KIELY J, HWANG R, HOUSTON J. Effect of surface steps on the plastic threshold in nanoindentation[J]. Physical Review Letters, 1998, 81(20):4424-4427. [10] 罗勇,葛世荣. Ti6Al4V合金的纳米硬度载荷依赖性实验研究[J]. 清华大学学报, 2007(11):1976-1979. LUO Yong, GE Shirong. Study on nano-hardness load dependence of Ti6Al4V composite alloys[J]. Journal of Tsinghua University, 2007(11):1976-1979. [11] OLIVER W, PHARR G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation[J]. Journal of Materials Research, 1992, 7(6):1564-1583. [12] 蔡晶琦. 单晶铜纳米压痕初始塑性变形行为实验研究[D]. 哈尔滨:哈尔滨工业大学, 2006. CAI Jingqi. Experimental investigations on initial deformation behaviors of single crystal copper in nanoindentation[D]. Harbin:Harbin Institute of Technology, 2006. [13] HAN Y, JING H, NAI S, et al. Creep mitigation in Sn-Ag-Cu composite solder with Ni-coated carbon nanotubes[J]. Journal of Materials Science:Materials in Electronics, 2012, 23(5):1108-1115. [14] OLIVER W, PHARR G. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20. [15] 王露萌. 双晶材料纳米压痕初始塑性变形行为的跨尺度模拟与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2013. WANG Lumeng. Multiscale simulation and experimental research of initial plastic deformation behavior during nanoindentation of bicrystal material[D]. Harbin:Harbin Institute of Technology, 2013. [16] MARQUES V, JOHNSTON C, GRANT P. Nanomechanical characterization of Sn-Ag-Cu/Cu joints-Part 1:Young's modulus, hardness and deformation mechanisms as a function of temperature[J]. Acta Materialia, 2013, 61(7):2460-2470. [17] CORCORAN, COLTON R, LILLEODDEN E, et al. Anomalous plastic deformation at surfaces:Nanoindentation of gold single crystals[J]. Physical Review B, 1997, 551(24):16057-16060. [18] LORENZ D, ZECKER A, HILPERT U, et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation[J]. Physical Review B, 2003, 67(17):386-393. [19] MASON J, LUND A, SCHUH C. Determining the activation energy and volume for the onset of plasticity during nanoindentation[J]. Physical Review B Condensed Matter, 2006, 73(5):1-14. [20] 张丽军, 单相高熵合金Al0.3CoCrFeNi纳米压痕蠕变和塑性变形行为研究[D]. 秦皇岛:燕山大学, 2015. ZHANG Lijun, Research on the nanoindentation creep and plastic deformation behavior of the single-phase Al0.3CoCrFeNi high-entropy alloy[D]. Qinhuangdao:Yanshan University, 2015. [21] SCHUH C A, ARGON A S, NIEH T G, et al. The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal[J]. Philosophical Magazine, 2003, 83(22):2585-2597. [22] BOLSHAKOV A, PHARR G. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques[J]. Journal of Materials Research, 1998, 13(4):1049-1058. [23] KEESE K, LI Z. Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter[J]. Scripta Materialia, 2006, 55(8):699-702. |