[1] 薛鹏,张星星,吴利辉,等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10):1222-1238. XUE Peng, ZHANG Xingxing, WU Lihui, et al. Research progress on friction stir welding and processing, Acta Metallurgica Sinica, 2016, 52(10):1222-1238. [2] 陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22):11-21. CHEN Gaoqiang, SHI Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22):11-21. [3] 刘会杰,刘向前,胡琰莹. 搅拌摩擦焊缝类型对接头拉伸性能及断裂特征的影响[J]. 机械工程学报, 2015, 51(22):29-34. LIU Huijie, LIU Xiangqian, HU Yanying. Effects of weld characteristics on tensile properties and fracture morphologies of friction stir welded joints[J]. Journal of Mechanical Engineering, 2015, 51(22):29-34. [4] 刘小超,武传松. 超声振动对6061-T4铝合金搅拌摩擦焊接头组织和性能的影响[J]. 焊接学报, 2014, 35(1):49-53. LIU Xiaochao, WU Chuansong. Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(1):49-53. [5] HE X C, GU F S, BALL A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65:1-66. [6] ZHANG Z, CHEN J T. Computational investigations on reliable finite element based thermo-mechanical coupled simulations of friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2012, 60:959-975. [7] ZHU Y C, CHEN G Q, ZHANG G, et al. Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction[J]. Materials & Design, 2016, 108:400-410. [8] NANDAN R, ROY G G, LIENERT T J, et al. Three-dimensional heat and material flow during friction stir welding of mild steel[J]. Acta Materialia, 2007, 55:883-895. [9] 石磊,武传松,刘会杰. 逆向差速搅拌摩擦焊接材料塑性流变和热场的数值模拟[J]. 机械工程学报, 2014, 50(16):140-146. SHI Lei, WU Chuansong, LIU Huijie. Modeling material plastic flow and thermal field in reverse dual-rotation friction stir welding[J]. Journal of Mechanical Engineering, 2014, 50(16):140-146. [10] ZHANG Z, ZHANG H W. Solid mechanics-based Eulerian model of friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2014, 72:1647-1653. [11] LI W Y, ZHANG Z H, LI J L, et al. Numerical analysis of joint temperature evolution during friction stir welding based on sticking contact[J]. Journal of Materials Engineering and Performance, 2012, 21(9):1849-1856. [12] 张昭, 刘会杰. 搅拌头形状对搅拌摩擦焊材料变形和温度场的影响[J]. 焊接学报, 2011, 32(3):5-8. ZHANG Zhao, LIU Huijie. Effect of pin shapes on material deformation and temperature field in friction stir welding[J]. Transactions of the China Welding Institution, 2011, 32(3):5-8. [13] 汪建华,姚舜,魏良武,等. 搅拌摩擦焊接的传热和力学计算模型[J]. 焊接学报, 2000, 21(4):61-64. WANG Jianhua,YAO Shun, WEI Liangwu, et al. Thermal and thermo-mechanical modelling of friction stir welding[J]. Transactions of the China Welding Institution, 2000, 21(4):61-64. [14] 胡礼木, 胡波. 搅拌摩擦焊焊接温度数值模型及其影响因素[J]. 机械工程学报, 2006, 42(7):235-238. HU Limu, HU Bo. Numeric model of welding temperature in friction stir welding and affecting factors[J]. Chinese Journal of Mechanical Engineering, 2006, 42(7):235-238. [15] 王大勇,冯吉才,王攀峰. 搅拌摩擦焊接热输入数值模型[J]. 焊接学报, 2005, 26(3):25-32. WANG Dayong, FENG Jicai, WANG Panfeng. Numerical model of heat input from rotational tool during friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(3):25-32. [16] ZHANG Z, WU Q, GRUJICIC M, et al. Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6[J]. Journal of Materials Science, 2016, 51:1882-1895. [17] ZHANG Z, WU Q. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding[J]. Journal of Mechanical Science and Technology, 2015, 29(10):4121-4128. [18] SHERCLIFF H R, ASHBY M F. A process model for age hardening of aluminium alloys[J]. Acta Metallurgica et Materialia, 1990, 38(10):1789-1812. [19] MYHR O R, GRONG Ø. Process modelling applied to 6082-T6 aluminium weldments[J]. Acta Metallurgica et Materialia, 1991, 39(11):2693-2708. [20] SHERCLIFF H R, RUSSELL M J, TAYLOR A, et al. Microstructural modelling in friction stir welding of 2000 series aluminium alloys[J]. Mechanics & Industry, 2005, 6(01):25-35. [21] FRIGAARD Ø, GRONG Ø, MIDLING O T. A process model for friction stir welding of age hardening aluminum alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(5):1189-1200. [22] MYHR O R, GRONG Ø. Modelling of non-isothermal transformations in alloys containing a particle distribution[J]. Acta Materialia, 2000, 48(7):1605-1615. [23] WAGNER R, KAMPMANN R. Materials science and technology-a comprehensive treatment[M]. Weinhem:Wiley-VCH, 1991. [24] ZHANG Z, WAN Z Y. Predictions of tool forces in friction stir welding of AZ91 magnesium alloy[J]. Science and Technology of Welding and Joining, 2012, 17(6):495-500. [25] MYHR O R, GRONG Ø, ANDERSEN S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Materialia, 2001, 49(1):65-75. [26] ESMAEILI S, LLOYD D J, POOLE W J. A yield strength model for the Al-Mg-Si-Cu alloy AA6111[J]. Acta Materialia, 2003, 51(8):2243-2257. [27] SIMAR A, BRÉCHET Y, de MEESTER B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Materialia, 2007, 55:6133-6143. |