[1] ZHANG H,WANG X,WANG G,et al. Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J]. Rapid Prototyping Journal,2013,19(6):387-394. [2] MA Y,CUIURI D,HOYE N,et al. Effects of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding[J]. Journal of Materials Research,2014,29(17):2066-2071. [3] MAZUMDER J,DUTTA D,KIKUCHI N,et al. Closed loop direct metal deposition:Art to part[J]. Optics & Lasers in Engineering,2000,34(4-6):397-414. [4] WANJARA P,BROCHU M,JAHAZI M. Electron beam free forming of stainless steel using solid wire feed[J]. Materials & Design,2007,28(8):2278-2286. [5] AMARNATH C,SREENATHBABU A,KARUNAKARAN K P. Statistical process design for hybrid adaptive layer manufacturing[J]. Rapid Prototyping Journal,1995,11(4):235-248. [6] DING D,PAN Z,CUIURI D,et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing,2015,31:101-110. [7] 耿海滨,熊江涛,黄丹,等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接,2015(11):17-21. GENG Haibin,XIONG Jiangtao,HUANG Dan,et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding & Joining,2015(11):17-21. [8] LI X,GAGNOUD A,FAUTRELLE Y,et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Materialia,2012,60(8):3321-3332. [9] BAI X,ZHANG H,WANG G. Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2015,77(1-4):717-727. [10] MALINOWSKI-BRODNICKA M,DEN O G,VINK W J P. Effect of electromagnetic stirring on GTA welds in austenitic stainless steel[J]. Welding J.,1990,69(2):52-59. [11] LIM Y C,YU X,CHO J H,et al. Effect of magnetic stirring on grain structure refinement:Part 1-Autogenous nickel alloy welds[J]. Science and Technology of Welding and Joining,2010,15(7):583-589. [12] LIM Y C,YU X,CHO J H,et al. Effect of magnetic stirring on grain structure refinement Part 2-Nickel alloy weld overlays[J]. Science and Technology of Welding and Joining,2010,15(5):400-406. [13] 柏兴旺,张海鸥,周祥曼,等. 外加高频磁场下电弧快速成形过程的电磁-流体耦合数值模拟[J]. 机械工程学报,2016,52(4):60-66. BAI Xingwang,ZHANG Haiou,ZHOU Xiangman,et al. Electromagneto-fluid coupling simulation of arc rapid prototyping process with external high-frequency magnetic field[J]. Journal of Mechanical Engineering,2016,52(4):60-66. [14] LI Y,WU C S,WANG L,et al. Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding[J]. Journal of Materials Processing Technology,2016,229:207-215. [15] 陈姬. 高速GMAW驼峰焊道形成机理的研究[D]. 济南:山东大学,2009. CHEN Ji. The study of haumping formation mechanism in high-speed GMAW[D]. Jinan:Shandong University,2009. [16] 杨丰兆. 外加磁场对高速GMAW驼峰焊道的抑制作用[D]. 济南:山东大学,2014. YANG Fengzhao. The suppression of haumping bead by an external magnetic field in high-speed GMAW[D]. Jinan:Shandong University,2014. [17] WU C,YANG F,GAO J. Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2016,230(1):188-193. [18] SHOICHI M,YUKIO M,KOKI T,et al. Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding[J]. Science and Technology of Welding and Joining,2013,18(1):38-44. [19] LIN Z Q,LI Y B,WANG Y S,et al. Numerical analysis of a moving gas tungsten arc weld pool with an external longitudinal magnetic field applied[J]. International Journal of Advanced Manufacturing Technology,2005,27(3-4):288-295. [20] LI L C,XIA W D. Effect of an axial magnetic field on a DC argon arc[J]. Chinese Physics B,2008,17(2):649-654. [21] CHEN T,ZHANG X,BAI B,et al. Numerical study of DC argon arc with axial magnetic fields[J]. Plasma Chemistry and Plasma Processing,2015,35(1):61-74. [22] YIN X,GOU J,ZHANG J,et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics,2012,45(45):285203-285215. [23] 周祥曼,张海鸥,王桂兰,等. 纵向稳态磁场辅助电弧增材制造的熔池数值模拟及搭接实验研究[C/CD]//第16届全国特种加工学术会议,2015. ZHOU Xiangman,ZHANG Haiou,WANG Guilan,et al. Numerical simulation of molten pool and overlapping experimental investigation for arc based additive manufacturing assisted with external longitudinal static magnetic field[C/CD]//The 16th National Conference on Special Processing,2015. [24] 车小平. 纵向磁场作用下铝合金MIG焊接实验研究及数值模拟[D]. 沈阳:沈阳工业大学,2007. CHE Xiaoping. Study on the welding test of Al alloy and simulation in mig arc welding with longitudinal magnetic field[D]. Shenyang:Shenyang University of Technology,2007. [25] 孙景刚. 间歇交变磁场对等离子堆焊金属组织及性能影响机理的研究[D]. 沈阳:沈阳工业大学,2009. SUN Jinggang. Research on principles of influence of intermittent alternative magnetic field on microstructure and properties of plasma arc surfacing layer[D]. Shenyang:Shenyang University of Technology,2009. [26] 慈鸿钢. 外加直流磁场对等离子弧堆焊层组织及性能的影响研究[D]. 沈阳:沈阳工业大学,2011. CI Honggang. The effect of external dc magnetic field on the microstructure and properties of plasma arc surfacing layer[D]. Shenyang:Shenyang University of Technology,2011. [27] 高亚楠. 纵向磁场作用下高速TIG焊接电弧行为及焊缝成形机理研究[D]. 沈阳:沈阳工业大学,2012. GAO Yanan. Research on high-speed tig welding arc behavior and weld formation mechanism under longitudinal magnetic fields[D]. Shenyang:Shenyang University of Technology,2012. [28] LUO J,LUO Q,WANG X,et al. EMS-CO2 welding:A new approach to improve droplet transfer characteristics and welding formation[J]. Materials and Manufacturing Processes,2010,25(11):1233-1241. [29] CHANG Y L,LIU X L,LU L,et al. Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW[J]. The International Journal of Advanced Manufacturing Technology,2014,70(9-12):1543-1553. [30] XIONG J,ZHANG G,GAO H,et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2013,29(2):417-423. [31] DING D,PAN Z,CUIURI D,et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing,2015,31:101-110. [32] 柏久阳,王计辉,林三宝,等. 电弧増材制造厚壁结构焊道间距计算策略[J]. 机械工程学报,2016,52(10):97-102. BAI Jiuyang,WANG Jihui,LIN Sanbao,et al. Model for multi-beads overlapping calculation in gta-additive manufacturing[J]. Journal of Mechanical Engineering,2016,52(10):97-102. [33] SONG Y,PARK S,CHOI D,et al. 3D welding and milling:Part I-a direct approach for freeform fabrication of metallic prototypes[J]. International Journal of Machine Tools and Manufacture,2005,45(9):1057-1062. [34] XIONG X H,QUAN D M,CHEN J L. Directly manufacturing table tennis mould by hybrid plasma deposition & milling[J]. Advanced Materials Research,2014,887-888:1219-1222. [35] AIYITI W,ZHAO W,LU B,et al. Investigation of the overlapping parameters of MPAW-based rapid prototyping[J]. Rapid Prototyping Journal,1995,12(3):165-172. [36] SURYAKUMAR S,KARUNAKARAN K P,BERNARD A,et al. Weld bead modeling and process optimization in hybrid layered manufacturing[J]. Computer-Aided Design,2011,43(4):331-344. [37] 王亚男,廖代强,武战军. 稳恒磁场对铁素体转变的影响[J]. 材料热处理学报,2005(5):105-108. WANG Yanan,LIAO Daiqiang,WU Zhanjun. Effect of stable magnetic field on the phase transformation of steels[J]. Transactions of Materials and Heat Treatment,2005(5):105-108. [38] 吴开明,周珍妮,张国宏,等. 强磁场对铁基合金中奥氏体分解的影响[J]. 材料工程,2010(6):84-89. WU Kaiming,ZHOU Zhenni,ZHANG Guohong,et al. Effect of high magnetic field on the decomposition of austenite in fe-based alloys[J]. Journal of Materials Engineering,2010(6):84-89. [39] 张快,李运刚,刘丽敏,等. 磁场在金属固态相变中的应用[J]. 钢铁研究,2010,38(2):57-59,62. ZHANG Kuai,LI Yungang,LIU Limin,et al. Application of magnetic field in solid phase transformation[J]. Research on Iron and Steel,2010,38(2):57-59,62. [40] 宫明龙,赵骧,王守晶,等. 磁场强度对Fe-0.76%C合金先共析铁素体显微组织的影响[J]. 金属学报,2008,44(5):615-618. GONG Minglong,ZHAO Xiang,WANG Shoujing,et al. Effect of magnetic field intensity on microstructure of proeutectoid ferrite in Fe-0.76%C alloy[J]. Acta Metallurgica Sinica,2008,44(5):615-618. [41] 梁龙飞,王绪,章守华. 临界区磁场热处理双相钢组织及性能的研究[J]. 热加工工艺,2001(5):15-17. LIANG LongFei,WANG Xu,ZHANG Shouhua. A study the structure and properties of dual-phase ste els produced by intercritical heat-treatment under a magnetic field[J]. Hot Working Technology,2001(5):15-17. [42] 冯光宏,谢建新. 磁场处理对微合金钢抗腐蚀性能的影响[J]. 钢铁研究学报,2001,13(5):39-42. FENG Guanghong,XIE Jianxin. Effect of magnetic treatment on corrosion resistance of microalloyed steel[J]. Journal of Iron and Steel Research,2001,13(5):39-42. |