• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (1): 136-143.doi: 10.3901/JME.2018.01.136

• 摩擦学 • 上一篇    下一篇

离合器配对摩擦副径向温度梯度对接触比压的影响

李和言1,2, 王宇森1, 熊涔博1, 陈飞1, 李明阳1, 杨硕3   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京电动车辆协同创新中心 北京 100081;
    3. 江麓机电集团公司 湘潭 411100
  • 收稿日期:2017-02-18 修回日期:2017-07-18 出版日期:2018-01-05 发布日期:2018-01-05
  • 作者简介:李和言,男,1978年出生,博士,副教授,硕士研究生导师。主要从事车辆传动,离合器、制动器摩擦等方面的研究。E-mail:lovheyan@bit.edu.cn
  • 基金资助:
    国家自然科学基金(51575042)、工信部基础产品创新科研(VTDP3203,VTDP2102)和北京市高校青年英才计划(YETP1174)资助项目。

Effect of Radial Temperature Gradient on Interface Pressure of Clutch Friction Pair

LI Heyan1,2, WANG Yusen1, XIONG Cenbo1, CHEN Fei1, LI Mingyang1, YANG Shuo3   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081;
    3. Norinco Group Jianglu Machinery and Electronics Group Company, Xiangtan 411100
  • Received:2017-02-18 Revised:2017-07-18 Online:2018-01-05 Published:2018-01-05

摘要: 针对离合器滑摩过程中摩擦副元件温度场和应力场分布,建立摩擦热流密度与真实接触面积的动态滑摩过程分析模型,通过动态测温和静态比压试验验证了理论模型对接触比压分布研究的适用性。引入了摩擦副元件动态滑摩热弹形变系数Kα、静态不均匀接触系数Kδ和离合器接触比压扰动系数KK值为接触比压最大值与名义平均接触比压之比,K值越大,配对摩擦副接触界面比压扰动越大,表明配对摩擦副接触特性越差,真实接触面积越小,离合器越可能出现局部高压与高温区。理论分析与试验结果表明:所研究的铜基粉末冶金摩擦材料与65Mn对偶钢片组成的配对摩擦副:在低、中摩擦热流密度时,真实接触面积为名义接触面积的40%~60%;高摩擦热流密度时,真实接触面积约为名义接触面积20%~40%;当达到或超过临界摩擦热流密度时,配对摩擦副真实接触面积仅为名义接触面积的10%~15%。

关键词: 接触比压, 摩擦热流密度, 配对摩擦副, 真实接触面积

Abstract: Based on numerical results of temperature field and stress field, a theoretical model is built to investigate thermal flux and actual contact area of the clutch friction pair during slipping process, which is validated by continuous temperature measurements and static pressure tests. Several coefficients are introduced to express slipping process of clutch friction pair:dynamic slipping thermal deformation coefficient Kα, static uneven contact coefficient Kδ, and interface pressure perturbation coefficient K. Occurrence probability of high-pressure and high-temperature areas is greater by the smaller actual contact area which leads to a larger value of interface pressure coefficient K as well. Calculation and experiment results indicate that the actual contact area ratio ranges from 40% to 60% for copper-base friction pair with low and middle friction thermal flux, and 20% to 40% with high friction thermal flux. While the friction thermal flux reaches at or above the limit, the ratio of the actual contact area to the nominal contact area is only 10%-15%.

Key words: friction pair, interface pressure, real contact area, thermal flux

中图分类号: