• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (10): 108-115.doi: 10.3901/JME.2017.10.108

• 运载工程 • 上一篇    下一篇

胎面变形与刚度对轮胎抓地性能的影响研究

王国林1, 张娉1, 周海超1, 杨建1, 郑州1, 任晓静2   

  1. 1. 江苏大学汽车与交通工程学院 镇江 212013;
    2. 风神轮胎股份有限公司 焦作 454150
  • 出版日期:2017-05-15 发布日期:2017-05-15
  • 作者简介:

    王国林,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为车辆动态性能、载运工具运行安全控制和汽车轮胎力学。

    E-mail:glwang@ujs.edu.cn

    张娉(通信作者),女,1991年出生。主要研究方向为轮胎滚阻和抓地性能的矛盾关系。

    E-mail:zhangpingjsdx@163.com

  • 基金资助:
    * 国家自然科学基金(51675240,51605198)、江苏省青年科学基金(SKB2016042722)、中国博士后科学基金(2015M571681)、江苏省自然科学研究面上(15KJB460008)和江苏省道路载运工具新技术应用重点实验室(BM20082061505)资助项目; 20161212收到初稿,20170314收到修改稿;

Effect of Tread Deformation and Stiffness on Road Holding Performance

WANG Guolin1, ZHANG Ping1, ZHOU Haichao1, YANG Jian1, ZHENG Zhou1, REN Xiaojing2   

  1. 1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013;
    2. Aeolus Tyre Co., Ltd., Jiaozuo 454150
  • Online:2017-05-15 Published:2017-05-15

摘要:

以库仑摩擦模型和衰减指数摩擦模型为基础,建立修正的衰减指数摩擦模型,进而以29580/R22.5全钢子午线轮胎为研究对象,采用数值分析方法分析轮胎制动过程中的胎面变形规律,揭示胎面变形及刚度分布与抓地力的关联关系。结果表明:修正的衰减指数摩擦模型能够更加真实地反映轮胎与路面之间制动力的变化情况。胎面径向变形呈现出中心大,从中心向边缘逐渐减小的分布趋势;胎面纵向变形在接地前缘变形较大,接地后缘变形较小。增大纵向变形有利于抓地力的提升。胎面表面径向微观刚度在接地区域(边缘除外)的刚度值变化不大,胎肩两侧会在小范围出现一个极值;胎面纵向微观刚度以胎面中心线为基准左右对称,在胎肩区域的刚度值明显低于胎面中间。降低胎面的径向和纵向表面微观刚度可提升抓地力。

关键词: 刚度矩阵, 胎面变形, 抓地力, 摩擦模型

Abstract:

Take 295/80R22.5 as the research object, a new frictional model, modified attenuation index frictional model, is proposed based on the Coulomb frictional model and the attenuation index model. The nonlinear friction least squares method is used to establish the new friction model. The tread deformation law by numerical analysis method is investigated, and the relationship between the tread deformation and the distribution of the stiffness and the road holding performance are revealed. The results show that the modified friction model can reflect the change of braking force between tire and road surface more realistically. The radial deformation is largest in the center and gradually decreases from center to edge area. The longitudinal deformation is larger at the leading edge of the contact area, and smaller at the trailing end. Increasing the vertical deformation is conducive to the improvement of grip performance. The micro radial stiffness values in the middle contact area (except the edge area) changes not so much, and two extreme values appear on both sides of the tire shoulder. The micro longitudinal stiffness value in the shoulder area is obviously lower than that in the middle, and it is symmetrical about the center line of the tread. Reducing the radial and longitudinal micro-stiffness increases the grip force.

Key words: grip force, stiffness matrix, tread deformation, friction model