[1] 马志阳,高丽敏,徐吉峰. 复合材料在大飞机主承力结构上的应用与发展趋势[J]. 航空制造技术, 2021, 64(11):24-30. MA Zhiyang, GAO Limin, XU Jifeng. Application and development for composite primary structure in large aircraft[J]. Aeronautical Manufacturing Technology, 2021, 64(11):24-30. [2] 黄志超,陈伟达,程雯玉,等. 复合材料连接技术进展[J]. 华东交通大学学报, 2013, 30(4):1-6. HUANG Zhichao, CHEN Weida, CHENG Wenyu, et al. Development of composite connection techniques[J]. Journal of East China Jiaotong University, 2013, 30(4):1-6. [3] 马毓,赵启林. 复合材料胶-螺混合连接接头承载力分析[J]. 复合材料学报, 2011, 28(4):225-230. MA Yu, ZHAO Qilin. Analysis of the bonded-bolted hybrid composite joints' carrying capacity[J]. Acta Materiae Compositae Sinica, 2011, 28(4):225-230. [4] 赵馨怡,黄盛楠,冯鹏,等. 复合材料胶栓混合连接机理的试验研究[J]. 工程力学, 2015, 32(S1):314-321. ZHAO Xinyi, HUANG Shengnan, FENG Peng, et al. Experimental research on hybrid connecting method for FRP constructional elements[J]. Engineering Mechanics, 2015, 32(S1):314-321. [5] KWEON J H, JUNG J W, KIM T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding[J]. Composite Structures, 2006, 75(1):192-198. [6] ZHANG Hongzhuang, LI Changyou, XU Mengtao, et al. A novel method for damage analysis of CFRP single-lap bolted, bonded and hybrid joints under compression[J]. Composite Structures, 2020, 251:112636. [7] KELLY G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single lap joints[J]. Composite Structures, 2006, 72(1):119-129. [8] ROSKOWICZ M, GODZIMIRSKI J, KOMOREK A, et al. Influence of the arrangement of mechanical fasteners on the static strength and fatigue life of hybrid joints[J]. Materials, 2020, 13(23):5308. [9] 程小全,汪源龙,张纪奎,等. 平面编织复合材料胶螺混合连接接头拉伸性能分析[J]. 固体力学学报, 2011, 32(4):346-352. CHENG Xiaoquan, WANG Yuanlong, ZHANG Jikui, et al. Tensile performance analysis of combined adhesive and bolted joints for plain woven composites[J]. Chinese Journal of Solid Mechanics, 2011, 32(4):346-352. [10] 陈洋. 二维三轴混合编织复合材料和钢板单搭接接头的力学性能研究[D]. 重庆:重庆大学, 2019. CHEN Yang. Study on the mechanical properties of single lap joints made by two-dimensional triaxial hybrid braided composites and steel sheet[D]. Chongqing:Chongqing University, 2019. [11] MULAY S S, UDHAYARAMAN R. On the constitutive modelling and damage behaviour of plain woven textile composite[J]. International Journal of Solids and Structures, 2019, 156:73-86. [12] 王新峰,周光明,周储伟,等. 基于周期性边界条件的机织复合材料多尺度分析[J]. 南京航空航天大学学报, 2005, 37(6):730-735. WANG Xinfeng, ZHOU Guangming, ZHOU Chuwei, et al. Multi-scale analyses of woven composite based on periodical boundary condition[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2005, 37(6):730-735. [13] LIAO Binbin, TAN Huancheng, ZHOU Jianwu, et al. Multi-scale modelling of dynamic progressive failure in composite laminates subjected to low velocity impact[J]. Thin-Walled Structures, 2018, 131:695-707. [14] ZHOU Yuan, LU Zixing, YANG Zhenyu. Progressive damage analysis and strength prediction of 2D plain weave composites[J]. Composites Part B:Engineering, 2013, 47:220-229. [15] 王新峰. 机织复合材料多尺度渐进损伤研究[D]. 南京:南京航空航天大学, 2007. WANG Xinfeng. Multi-scale analyses of damage evolution in woven composites materials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007. [16] UDHAYARAMAN R, MULAY S S. Multi-scale approach based constitutive modelling of plain woven textile composites[J]. Mechanics of Materials, 2017, 112:172-192. [17] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2):329-334 [18] HOU Jingping, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science Technology, 2000, 60(2):273-281. [19] 周喜辉,铁瑛,李成,等. 补片参数对胶接修理碳纤维层合板抗冲击损伤性能的影响[J]. 振动与冲击, 2019, 38(3):271-278. ZHOU Xihui, TIE Ying, LI Cheng, et al. Effects of patch parameters on anti-impact damage performance of adhesive repaired carbon fiber laminates[J]. Journal of Vibration and Shock, 2019, 38(3):271-278. [20] TIE Ying, HOU Yuliang, LI Cheng, et al. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches[J]. Composite Structures, 2018, 190:179-188. [21] 薛亚红,陈继刚,闫世程,等. 二维机织复合材料力学分析中的周期性边界条件研究[J]. 纺织学报, 2016, 37(9):70-77. XUE Yahong, CHEN Jigang, YAN Shicheng, et al. Periodic boundary conditions for mechanical property analysis of 2-D woven fabric composite[J]. Journal of Textile Research, 2016, 37(9):70-77. [22] WANG Chen, ZHONG Yucheng, JI Xianbai, et al. Strength prediction for bi-axial braided composites by a multi-scale modelling approach[J]. Journal of Materials Science, 2016, 51(12):6002-6018. [23] CHAMIS C C. Mechanics of composites materials:past, present and future[J]. Journal of Composites Technology and Research, 1989, 11(1):3-14. [24] CAMPILHO R D S G, BANEA M D, NETO J A B P, et al. Modelling adhesive joints with cohesive zone models:Effect of the cohesive law shape of the adhesive layer[J]. International Journal of Adhesion and Adhesives, 2013, 44(7):48-56. [25] HOU Yuliang, TIE Ying, LI Cheng, et al. Low-velocity impact behaviors of repaired CFRP laminates:Effect of impact location and external patch configurations[J]. Composites Part B:Engineering, 2019, 163:669-680. [26] 冯振宇,李恒晖,刘义,等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12):12088-12093. FENG Zhenyu, LI Henghui, LIU Yi, et al. Comparison of constitutive and failure models of 7075-7351 alloy at intermediate and low strain rates[J]. Materials Reports, 2020, 34(12):12088-12093. [27] HUANG Weibo, ZHANG Yimin, DAI Weibing, et al. Mechanical properties of 304 austenite stainless steel manufactured by laser metal deposition[J]. Materials Science and Engineering:A, 2019, 758:60-70. [28] ZHANG Hanyu, ZHANG Lei, LIU Zhao, et al. Research in failure behaviors of hybrid single lap aluminum-CFRP (plain woven) joints[J]. Thin-Walled Structures, 2021, 161:107488. [29] MEHRABIAN M, BOUKHILI R. 3D-DIC strain field measurements in bolted and hybrid bolted-bonded joints of woven carbon-epoxy composites[J]. Composites Part B:Engineering, 2021, 218:108875. [30] ZHAO Libin, AN Xin, LIU Fengrui, et al. Secondary bending effects in progressively damaged single-lap, single-bolt composite joints[J]. Results in Physics, 2016, 6:704-711. [31] 王涛,侯玉亮,铁瑛,等. 基于ECPL模型的平纹机织复合材料低速冲击多尺度模拟[J]. 振动与冲击, 2020, 39(20):295-304. WANG Tao, HOU Yuliang, TIE Ying, et al. Multi-scale simulation of low-velocity impact on plain woven composites based on an ECPL model[J]. Journal of Vibration and Shock, 2020, 39(20):295-304. [32] 马晓龙,李成,铁瑛,等. 搭接长度对平纹机织复合材料胶接结构连接性能影响的多尺度分析[J]. 机械工程学报, 2020, 56(22):101-111. MA Xiaolong, LI Cheng, TIE Ying, et al. Multiscale analysis on the effect of lap length on bonding strength of adhesively bonding structures of plain weave composites[J]. Journal of Mechanical Engineering, 2020, 56(22):101-111. [33] SUN Ligang, TIE Ying, HOU Yuliang, et al. Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model[J]. Engineering Fracture Mechanics, 2020, 228:106897. |