Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (20): 64-79.doi: 10.3901/JME.2023.20.064
Special Issue: 《机械工程学报》近期佳作集锦 | “双碳”绿色制造技术
Previous Articles Next Articles
SHAN Zhongde1, ZHOU Zhengxi1, SUN Zheng1, HUANG Hao2, LIU Yang3
Received:
2023-05-26
Revised:
2023-07-17
Online:
2023-10-20
Published:
2023-12-08
CLC Number:
SHAN Zhongde, ZHOU Zhengxi, SUN Zheng, HUANG Hao, LIU Yang. Research of 3D Advanced Aerospace Composite Preforms Forming Technology and Equipment[J]. Journal of Mechanical Engineering, 2023, 59(20): 64-79.
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007(1):1-12. DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007(1):1-12. [2] 郭俊刚,张新娟,田亦瑶,等. 复合材料液体成型技术在飞机上的应用及发展[J]. 宇航材料工艺,2022,52(2):85-91. GUO Jungang,ZHANG Xinjuan,TIAN Yiyao,et al. Development and application of liquid composite molding technique on aircraft[J]. Aerospace Materials & Technology,2022,52(2):85-91. [3] 程健男,徐福泉,张体磊. 树脂基复合材料在直升机的应用及其制造技术[J]. 航空科学技术,2021,32(1):109-114. CHENG Jiannan,XU Fuquan,ZHANG Tilei. Application and manufacturing technology of composites in helicopter[J]. Aeronautical Science & Technology,2021,32(1):109-114. [4] TOOR Z S. Space applications of composite materials[J]. Journal of Space Technology,2018,8(1):65-70. [5] 益小苏,张明,安学锋,等. 先进航空树脂基复合材料研究与应用进展[J]. 工程塑料应用,2009,37(10):72-76. YI Xiaosu,ZHANG Ming,AN Xuefeng,et al. Development and application of advanced aeronautical polymer matrix composites[J]. Engineering Plastics Application,2009,37(10):72-76. [6] GHORI S W,SIAKENG R,RASHEED M,et al. The role of advanced polymer materials in aerospace[M]//Sustainable composites for aerospace applications. Cambridgeshire:Woodhead Publishing,2018:19-34. [7] 陈小明. 异型构件预制体机器人三维针刺成形轨迹规划与针刺模拟[D]. 天津:天津工业大学,2018. CHEN Xiaoming. 3D needle punching robot trajectory planning of special-shaped components and needle punching simulation[D]. Tianjin:Tiangong University,2018. [8] GAUTRONNEAU E,BOURY D,CHEVROLLIER A,et al. P80 nozzle low cost technologies[C]//57th International Astronautical Congress. Valencia,2006:C4. 2.05. [9] AMRC Composites Centre. Robotic braider open for business[EB/OL]. [2018-10-08]. https://www.amrc.co.uk/n-ews/robotic-braider-open-for-business. [10] Donghua Universty. DHU World-leading 3D weaving technology behind the 2022 winter olympic torch[EB/OL]. [2023-03-27]. https://english.dhu.edu.cn/_t276/2022/0217/c5357a293493/page.psp. [11] 杨建成. 碳纤维多层角联机织装备及技术[J]. 纺织机械,2014(4):88-89. YANG Jiancheng. Carbon fiber multi-layer angle- interlock weaving equipment[J]. Textile Machinery,2014(4):88-89. [12] MOHAMED M,BOGDANOVICH A. Comparative analysis of different 3D weaving processes,machines and products[C]//Proceedings of The Proceedings of the 17th International Conference on Composite Materials,Edinburgh,2009:27-31. [13] SHAN Zhongde,CHEN Sisi,ZHANG Qun,et al. Three-dimensional woven forming technology and equipment[J]. Journal of composite Materials,2016,50(12):1587-1594. [14] PFAFF. List of machines (alphabetical,machine classes ascending)[EB/OL]. [2023-03-27]. https://www.pfaffindustrial.com/en/portfolio/robotic/kl-504. [15] 姚福林,李亮玉,岳建锋,等. 复合材料单边缝合机械手线迹稳定成型技术研究[J]. 机械工程学报,2016,52(13):60-67. YAO Fulin,LI Liangyu,YUE Jianfeng,et al. The stitch stable forming technology of one-side sewing manipulator applied in composite material[J]. Journal of Mechanical Engineering,2016,52(13):60-67. [16] 单忠德,康怀镕,臧勇,等. 三维织造层间增强的纤维棒复合材料细观结构模型及力学性能有限元模拟[J]. 复合材料学报,2015,32(1):138-149. SHAN Zhongde,KANG Huairong,ZANG Yong,et al. Microscopic structure model and finite element simulation of mechanical properties of fiber bar composites reinforced by three dimensional weaving[J]. Acta Materiae Compositae Sinica,2015,32(1):138-149. [17] WAMBUA P A,ANANDJIWALA R. A review of preforms for the composites industry[J]. Journal of Industrial Textiles,2011,40(4):310-333. [18] OGALE V,ALAGIRUSAMY R. Textile preforms for advanced composites[J]. Indian Journal of Fibre and Textile Research,2004,29(3):366-375. [19] SABOKTAKIN A. 3D textile preforms and composites for aircraft structures:A review[J]. International Journal of Aviation,Aeronautics,and Aerospace,2019,6(1):2. [20] MOURITZ A P,BANNISTER M K,FALZON P,et al. Review of applications for advanced three dimensional fibre textile composites[J]. Composites Part A:Applied Science and Manufacturing,1999,30(12):1445-1461. [21] CHIU C H,CHENG C G. Weaving method of 3D woven preforms for advanced composite materials[J]. Textile Research Journal,2003,73(1):37-41. [22] HU Xudong,YING Zhiping,CHENG Xiaoying,et al. Effect of Z-binder tension and internal micro-structure on damage behavior of 3D orthogonal woven composite[J]. Journal of Industrial Textiles,2019,49(5):551-571. [23] GEREKE T,CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures,2019,209:60-66. [24] HARRIES M. Benefits of 3D woven composite fabrics[EB/OL]. [2023-03-27]. https://www.avmmag.com/benefits-of-3-d-woven-composite-fabrics/. [25] COFFENBERRY B S. Next-Generation composites in aircraft engines:approach to development and production implementation[C/CD]//ABC 2013 Annual Conference,California,2013. [26] GARDINER G. 3-D preformed composites:The leap into LEAP[EB/OL]. [2023-03-27]. https://www.compositesworld.com/articles/3-d-preformed-composites-the-leap-into-leap. [27] GARDINER G. First 3D woven composite for NASA thermal protection systems[EB/OL]. [2023-03-27]. https://www.compositesworld.com/articles/first-3d-woven-composite-for-NASA-thermal-protection-systems. [28] FUKUTA K,MIYASHITA R,SEKIGUTI J,et al. Three-dimensional fabric,and method and loom construction for the production thereof:U.S. Patent 3834424A[P]. 1974-09-10. [29] SCHINDLER S,BAUDER H J,WOLFRUM J,et al. Engineering of three-dimensional near-net-shape weave structures for high technical performance in carbon fibre reinforced plastics[J]. Journal of Engineered Fibers and Fabrics,2019,14:1-16. [30] 陈利,赵世博,王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报,2018(S1):80-87. CHEN Li,ZHAO Shibo,WANG Xinmiao. Development and application of 3d textile reinforcements in the aerospace field[J]. China Textile Leader,2018(S1):80-87. [31] UDOV-CLARK S,MOURITZ A P,LEE L,et al. Fibre damage in the manufacture of advanced three-dimensional woven composites[J]. Composites Part A:Applied Science and Manufacturing,2003,34(10):963-970. [32] ARCHER E,BUCHANAN S,MCILHAGGER A T,et al. The effect of 3D weaving and consolidation on carbon fiber tows,fabrics,and composites[J]. Journal of Reinforced Plastics and Composites,2010,29(20):3162-3170. [33] TURNER P,LIU T,ZENG X. Collapse of 3D orthogonal woven carbon fibre composites under in-plane tension/compression and out-of-plane bending[J]. Composite Structures,2016,142:286-297. [34] LABANIEH A R,LEGRAND X,KONCAR V,et al. Development in the multiaxis 3D weaving technology[J]. Textile Research Journal,2016,86(17):1869-1884. [35] 单忠德,战丽,缪云良,等. 复合材料构件数字化精确成形技术与装备[J]. 科技导报,2020,38(14):63-67. SHAN Zhongde,ZHAN Li,MIAO Yunliang,et al. Composite component digital precision forming technology and equipment[J]. Science & Technology Review,2020,38(14):63-67. [36] HUANG H,SHAN Z,LIU J,et al. A unified trans-scale mechanical properties prediction method of 3D composites with void defects[J]. Composite Structures,2023,306:116574. [37] 单忠德,刘阳,范聪泽,等. 复合材料预制体成形制造工艺与装备研究[J]. 中国机械工程,2021,32(23):2774-2784,2831. SHAN Zhongde,LIU Yang,FAN Congze,et al. Research on forming manufacturing technology and equipment of composite preforms[J]. China Mechanical Engineering,2021,32(23):2774-2784,2831. [38] SHAN Zhongde,LIU Feng,DONG Xiaoli,et al. Three-dimensional weave-forming method for composites:U.S. Patent 8600541[P]. 2013-12-03. [39] 陈哲,刘丰,吴晓川,等. 复合材料预制体多针多向协同织造路径生成方法研究[J]. 中国机械工程,2021,32(10):1151-1156. CHEN Zhe,LIU Feng,WU Xiaochuan,et al. Research on Multi-needles-multi-directions cooperative weaving path generation method of composite preform[J]. China Mechanical Engineering,2021,32(10):1151-1156. [40] GUO Zitong,SHAN Zhongde,HUANG Jihua,et al. Effect of fiber twisting on the Z-directional properties of composites[J]. Textile Research Journal,2022,92(23-24):4933-4953. [41] GUO Zitong,SHAN Zhongde,HUANG Jihua,et al. Study on friction and wear of preform Z‐directional fiber[J]. Polymer Composites,2022,43(5):2779-2795. [42] 胡方田,朱小颖. 先进复合材料用立体织物研究进展[J]. 宇航材料工艺,2022,52(2):48-58. HU Fangtian,ZHU Xiaoying. Research progress of three-dimensional fabrics for advanced composites [J]. Aerospace Materials & Technology,2022,52(2):48-58. [43] BYUN J H,CHOU T W. Process-microstructure relationships of 2-step and 4-step braided composites[J]. Composites Science and Technology,1996,56(3):235-251. [44] MEI Haiyang,HAN Zhenyu,LU Guangyu,et al. A methodology for modeling the relationship between process and topological yarn structure of 3D rotary braided rectangular preforms[J]. Composites Science and Technology,2018,168:188-194. [45] BOGDANOVICH A E. An overview of three-dimensional braiding technologies[M]//Advances in Braiding Technology,Cambridge:Woodhead Publishing,2016:3-78. [46] 王一博,刘振国,胡龙,等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术,2017(19):78-85. WANG Yibo,LIU Zhenguo,HU Long,et al. Recent advancements of 3D braided composite and its applications in aerospace[J]. Aeronautical Manufacturing Technology,2017(19):78-85. [47] 韩振宇,梅海洋,付云忠,等. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程,2018,46(11):25-36. HAN Zhenyu,MEI Haiyang,FU Yunzhong,et al. Research progress on preform forming and microstructure of 3D braided composites[J]. Journal of Materials Engineering,2018,46(11):25-36. [48] CICHOSZ J. Experimental characterization and numerical modeling of the mechanical response for biaxial braided composites[D]. München:Technische Universität München,2016. [49] LINDNER D. AFRL. Associates improve processes for fabricating aircraft engine inlet ducts[EB/OL]. [2023-03-27]. https://www.af.mil/News/Article-Display/Article/2134952/afrl-associates-improve-processes-for-fabricating-aircraft-engine-inlet-ducts/. [50] MASON H. A&P Technology la-unches 864-carrier braiding machine[EB/OL]. [2023-03-27]. https://www.compositesworld.com/news/ap-technology-launches-864-carrier-braiding-machine. [51] CARL H C,STEVEN M H,BROWN R T. Braiding apparatus:U.S. Patent 4934240A[P]. 1990-06-19. [52] MUNGALOV D,BOGDANOVICH A. Automated 3-D braiding machine and method:U.S. Patent 6,439,096[P]. 2002-08-27. [53] 李静. 三维编织机的研究现状与发展趋势[J]. 纺织科学研究,2020,182(2):78-80. LI Jing. Research status and development trend of 3d braiding machine[J]. Textile Science Research,2020,182(2):78-80. [54] EMONTS C,GRIGAT N,MERKORD F,et al. Innovation in 3D braiding technology and its applications[J]. Textiles,2021,1(2):185-205. [55] 李政宁,陈革,Frank K. 三维编织工艺及机械的研究现状与趋势[J]. 玻璃钢/复合材料,2018(5): 109-115. LI Zhengning,CHEN Ge,Frank K. The development and tendency of 3D braiding technology and machinery[J]. Composites Science and Engineering,2018(5):109-115. [56] SONTAG T,YANG H,GRIES T,et al. Recent advances in 3D braiding technology[J]. Advances in 3D Textiles,2015:153-181. [57] 梅海洋. 复合材料旋转法三维编织成型及其实验平台研究[D]. 哈尔滨:哈尔滨工业大学,2016. Research on the forming and experiment platform of 3D rotary braided composites[D]. Harbin:Harbin University of Technology,2016. [58] ZHANG Yujing,MENG Zhou,SU Liuyuan,et al. Modeling and analysis of carbon fiber carrier tension systems used in 3D braiding machine[J]. Journal of Engineered Fibers and Fabrics,2019,14:155892501984576. [59] DRANSFIELD K,BAILLIE C,MAI Y W. Improving the delamination resistance of CFRP by stitching—a review[J]. Composites Science and Technology,1994,50(3):305-317. [60] 艾涛,王汝敏. Kevlar缝合复合材料的研究进展[J]. 材料导报,2005(1):64-67. AI Tao,WANG Rumin. Progress in stitched composites with Kevlar Yarns[J]. Materials Reports,2005(1):64-67. [61] MINNETYAN L,ABDI F,CHAMIS C. Probabilist-ic assessment of fracture in stitched and unstitched composite laminates[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit. California,1998:2058. [62] SONG Chenyang,FAN Wei,LIU Tao,et al. A review on three-dimensional stitched composites and their research perspectives[J]. Composites Part A:Applied Science and Manufacturing,2022,153:106730. [63] MOURITZ A,COX B. A mechanistic approach to the properties of stitched laminates[J]. Composites Part A:Applied Science and Manufacturing,2000,31(1):1-27. [64] 潘杰. 三维增强复合材料单面双针缝合装备技术研究[D]. 南京:南京航空航天大学,2017. PAN Jie. Research on the technology of single-sided two needles stitching equipment for 3d reinforced composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [65] VELICKI A,JEGLEY D C. PRSEUS structural concept development[C]//52nd Aerospace Sciences Meeting. Virginia,2014:0259. [66] LI V. Hybrid wing body (HWB) aircraft design and optimization using stitched composites[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Virginia,2015:2325. [67] KARAL M. AST composite wing program:executive summary[R]. Washington:NASA/CR,2001. [68] LAOURINE E. Einseitige Nähtechnik für die Herst-ellung von dreidimensionalen Faserverbundbauteile-n[D]. Ariana:Diplom-Ingenieur Ezzeddine Laourin-e,2005. LAOURINE E. Single side stitching technology for preparing fiber reinforced composite materials[D]. Ariana:Diplom-Ingenieur Ezzeddine Laourine,2005. [69] SHUART M J,JOHNSTON N J,DEXTER H B,et al. Automated fabrication technologies for high performance polymer composites[R]. Washington:NASA Technical Reports Server,1998. [70] 姜海珍. 三维纺织复合材料预制件缝合机器人视觉跟踪系统的研究[D]. 天津:天津工业大学,2008. JIANG Haizhen. Research on vision tracking system of 3d textile composite preform stitching robot[D]. Tianjin:Tiangong University,2008. [71] XU Huajie,ZHANG Litong,CHENG Laifei. The effect of Z-yarn density on the in-plane shear property of three-dimensional stitched carbon fiber reinforced silicon carbide composites[J]. Composites Science and Technology,2015,106:120-126. [72] MOURITZ A P,LEONG K H,HERSZBERG I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites[J]. Composites Part A:Applied Science and Manufacturing,1997,28(12):979-991. [73] MOURITZ A P,COX B N. A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven,stitched and pinned composites[J]. Composites Part A:Applied Science and Manufacturing,2010,41(6):709-728. [74] YOSHIMURA A,YASHIRO S,OKABE T,et al. Characterization of tensile damage progress in stitched CFRP laminates[J]. Advanced Composite Materials,2007,16(3):223-244. [75] YUDHANTO A,LUBINEAU G,VENTURA I A,et al. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension[J]. Composites Part A:Applied Science and Manufacturing,2015,71:17-31. [76] 张晓虎,李贺军,郝志彪,等. 喷管炭-炭材料出口锥预制体技术[J]. 材料导报,2007(2):98-101. ZHANG Xiaohu,LI Hejun,HAO Zhibiao,et al. Preform technology of carbon-carbon composites nozzle exit cone[J]. Materials Reports,2007(2):98-101. [77] 张海军. 针刺碳/碳复合材料细观力学建模及氧化行为研究[D]. 南京:南京航空航天大学,2018. ZHANG Haijun. Study on meso-mechanics model and oxidation behavior of needled-punched carbon/carbon composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [78] FAWCETT R,HORNICK J,BACKLUND D,et al. Advanced 3rd stage (A3S) carbon-carbon exit cone[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford,2008:4888. [79] FAN Shangwu,ZHANG Litong,XU Yongdong,et al. Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials[J]. Composites Science and Technology,2007,67(11-12):2390-2398. [80] MONTAUDON M,FENOT F,CHRISTIN F,et al. Novoltex textures for thermo-structural materials[C]//27th Joint Propulsion Conference. California,1991:1848. [81] LAWRENCE B D,BOGETTI T A,EMERSON R P. Processing and characterization of needled carbon composites[R]. Maryland:U-S Army Research Laboratory Aberdeen Proving Ground,2015. [82] CHEN Xiaoming,CHEN Li,ZHANG Chunyan,et al. Three-dimensional needle-punching for composites–A review[J]. Composites Part A:Applied Science and Manufacturing,2016,85:12-30. [83] Olry P. Process for manufacturing homogeneously needled three-dimensional structures of fibrous material:U.S. Patent 4790052[P]. 1988-12-13. [84] NOZZLES T C. Off the shelves breakthrough technology to improve upper stage liquid rocket engine performance. Marc Lacoste,Alain Lacombe,Thierry Pichon[C]//2nd European Conference for Aerospace Sciences (EUCASS). Brussels,2007. [85] Lacombe A. 3D Novoltex and Naxeco carbon-carbon nozzle extensions; matured,industrial and available technologies to reduce programmatic and technical risks and to increase performance of launcher upper stage engines[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford,2008:5236. [86] 苏君明,杨军,肖志超,等. C/C复合材料飞机刹车盘的结构与性能[J]. 新型炭材料,2006(1):81-89. SU Junming,YANG Jun,XIAO Zhichao,et al. Structure and properties of carbon/carbon composite materials for aircraft brake discs[J]. New Carbon Materials,2006(1):81-89. [87] CHEN Xiaoming,ZHAO Yufen,ZHANG Chunyan,et al. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing,2018,50:132-139. [88] CHEN Xiaoming,ZHANG Yifan,XIE Junbo,et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing,2018,52:24-34. |
[1] | WANG Guoqing, XIONG Huan, HOU Junjie. China Aerospace Systems Engineering Method in the Digital Age [J]. Journal of Mechanical Engineering, 2024, 60(14): 206-214. |
[2] | HAO Peng, YANG Hao, CHEN Faxin, ZENG Yaoxiang, WANG Mingjie, WANG Bo. A Precise Design Method for Structural Safety Factor Considering Load and Strength Uncertainty [J]. Journal of Mechanical Engineering, 2024, 60(13): 182-192. |
[3] | TIAN Wenqing, CAI Chao, GUO Ruipeng, SHI Yusheng. A Review on Numerical Simulation of Near Net Shaping Hot Isostatic Pressing:Current Status and Future Prospects [J]. Journal of Mechanical Engineering, 2024, 60(1): 13-26. |
[4] | TIAN Zhi-qiang, JIANG Xing-yu, YANG Guo-zhe, LIU Wei-jun, SUO Ying-qi, CHEN Ke-qiang, XING Fei. Energy Efficient Scheduling of Flexible Job Shop with Aerospace Complex Components [J]. Journal of Mechanical Engineering, 2023, 59(8): 273-287. |
[5] | HAO Daxian, WANG Wei, WANG Qilong, YUN Chao. Applications and Development Trend of Robotics in Composite Material Process [J]. Journal of Mechanical Engineering, 2019, 55(3): 1-17. |
[6] | WANG Gang, REN Ke, HU Yisen, YE Mao, WANG Shuqing, RONG Yiming. Microstructural Characteristics-based Mechanical Behavior of Aerospace Al-Cu Alloys [J]. Journal of Mechanical Engineering, 2018, 54(9): 77-85. |
[7] | ZHOU Yaqin, YANG Changqi, LÜ Youlong, JIN Yongqiao, ZHANG Jie. Scheduling the Production of Aerospace Structural Parts with Dual Resource Constraints [J]. Journal of Mechanical Engineering, 2018, 54(9): 55-63. |
[8] | LI Ming, SHI Honggeng, LAI Yinan, HUANG Xun, LI Hongwei, ZHAO Chunzhang, YE Xin. Review on Management at Joint Fund for Aerospace Advanced Manufacturing Technology Research [J]. Journal of Mechanical Engineering, 2018, 54(9): 1-8. |
[9] | XU Hongyan;ZHANG Jingzhou;YAO Yu. Numerical Investigation on Film Cooling Performance of Turbine Blade with Asymmetrical Fan-shaped Holes [J]. , 2011, 47(18): 152-157. |
[10] | YANG Chengfeng;ZHANG Jingzhou;CHEN Liqiang. Film Cooling Effectiveness of Declining Holes with Tabs-ridged [J]. , 2009, 45(9): 312-316. |
[11] | Lu Jiechi;Wang Chun;Qian Minghai. TECHNIQUE OF MANUFACTURING MATCHING SURFACES ON THE AEROSPACE LARGE SCALE HONEYCOMB COMPLEX MATERIAL STRUCTURE [J]. , 1999, 35(1): 65-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||