Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (20): 244-260.doi: 10.3901/JME.2023.20.244
Previous Articles Next Articles
JIA Linhua, ZHENG Jihui, ZHANG Fumin, QU Xinghua
Received:
2023-06-02
Revised:
2023-09-13
Online:
2023-10-20
Published:
2023-12-08
CLC Number:
JIA Linhua, ZHENG Jihui, ZHANG Fumin, QU Xinghua. Research Progress of High Precision Ranging Technology Based on Optical Frequency Comb[J]. Journal of Mechanical Engineering, 2023, 59(20): 244-260.
[1] 张国雄. 坐标测量技术发展方向[J]. 红外与激光工程,2008,37(S1):1-5. ZHANG Guoxiong. Development orientations of coordinate measuring techniques[J]. Infrared and Laser Engineering,2008,37(S1):1-5. [2] 杨凌辉,杨学友,劳达宝,等. 采用光平面交汇的大尺寸坐标测量方法[J]. 红外与激光工程,2010,39(6):1105-1109. YANG Linghui,YANG Xueyou,LAO Dabao,et al. Large-scale coordinates measurement method based on intersection of optical planes[J]. Infrared and Laser Engineering,2010,39(6):1105-1109. [3] 端木琼,杨学友,邾继贵,等. 基于光电扫描的三维坐标测量系统[J]. 红外与激光工程,2011,40(10):2014-2019. DUANMU Qiong,YANG Xueyou,ZHU Jigui,et al. 3D coordinate measurement system based on optoelectronic scanning[J]. Infrared and Laser Engineering,2011,40(10):2014-2019. [4] 谭久彬,蒋庄德,雒建斌,等. 高端精密装备精度测量基础理论与方法[J]. 中国科学基金,2022,36(6):955-962. TAN Jiubin,JIANG Zhuangde,LUO Jianbin,et al. Accuracy measurement theory and method for high-end precision equipment[J]. Bulletin of National Natural Science Foundation of China,2022,36(6):955-962. [5] RAKICH A,DETTMANN L,LEVEQUE S,et al. A 3D metrology system for the GMT[C]//Ground-based and Airborne Telescopes VI. SPIE,2016,9906:437-453. [6] DIDDAMS S A,JONES D J,CUNDIFF S T,et al. A direct rf to optical frequency measurement with a femtosecond laser comb spanning 300 THz[C/CD]//Quantum Electronics & Laser Science Conference,IEEE,2000. [7] MINOSHIMA K,MATSUMOTO H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics,2000,39(30):5512. [8] YE J. Absolute measurement of a long,arbitrary distance to less than an optical fringe[J]. Optics Letters,2004,29(10):1153. [9] JOO K N,KIM S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express,2006,14(13):5954-5960. [10] CUI M,ZEITOUNY M G,BHATTACHARYA N,et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters,2009,34(13):1982-1984. [11] CODDINGTON I,SWANN W C,NENADOVIC L,et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics,2009,3(6):351-356. [12] WEI D,TAKAHASHI S,TAKAMASU K,et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express,2011,19(6):4881. [13] 王国超. 基于飞秒激光光学频率梳的大尺寸绝对测距方法研究[D]. 长沙:国防科学技术大学,2015. WANG Guochao. Study on large-scale absolute distance measurement using optical frequency comb of femtosecond lasers[D]. Changsha:National University of Defense Technology,2015. [14] SUH M G,VAHALA K J. Soliton microcomb range measurement[J]. Science,2018,359(6378):884. [15] TROCHA P,KARPOV M,GANIN D,et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science,2018,359(6378):887-891. [16] ZHANG T,QU X,ZHANG F,et al. Long distance measurement system by optical sampling using a femtosecond laser[J]. IEEE Photonics Journal,2018,10(5):1-10. [17] ZHAO X,QU X,ZHANG F,et al. Absolute distance measurement by multiheterodyne interferometry using an electro-optic triple comb[J]. Optics Letters,2018,43(4):807-810. [18] RIEMENSBERGER J,LUKASHCHUK A,KARPOV M,et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature,2020,581(7807):164-170. [19] WANG J,LU Z,WANG W,et al. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research,2020,8(12):1964-1972. [20] JANG Y,LIU H,YANG J,et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb[J]. Physical Review Letters,2021,126(2):23903. [21] NIU Q,ZHENG J,CHENG X,et al. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb[J]. Optics Express,2022,30(19):35029. [22] LUKASHCHUK A,RIEMENSBERGER J,STROGANOV A,et al. Chaotic microcomb inertiafree parallel ranging[J]. APL Photonics,2023,8(5):056102. [23] 王伟强. 基于微环谐振腔的克尔光频梳研究[D]. 西安:中国科学院西安光学精密机械研究所,2018. WANG Weiqiang. Study on Kerr optical frequency comb based on micro-ring resonator[D]. Xi’an:Xi’an Institute of Optics & Precision Mechanics,Chinese Academy of Sciences,2018. [24] TEETS R,ECKSTEIN J,HÄNSCH T W. Coherent two-photon excitation by multiple light pulses[J]. Phys. Rev. Lett.,1977,38(14):760-764. [25] JONES D J,DIDDAMS S A,RANKA J K,et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science,2000,288(5466):635-639. [26] LEZIUS M,WILKEN T,DEUTSCH C,et al. Space-borne frequency comb metrology[J]. Optica,2016,3(12):1381-1387. [27] LUO D,LI W,LIU Y,et al. High power self-similar amplification seeded by a l GHz harmonically mode-locked Yb-fiber laser[J]. Applied Physics Express,2016,9(8):082702. [28] LIU Y,LI W,LUO D,et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express,2016,24(10):10939-10945. [29] LUO D,LIU Y,GU C,et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Applied Physics Letters,2018,112:06l106. [30] 吴浩煜,时雷,马挺,等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光,2017,44(6):69-77. WU Haoyu,SHI Lei,MA Ting,et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers,2017,44(6):69-77. [31] 曹士英,孟飞,林百科,等. 长时间精密锁定的掺Er光纤飞秒光学频率梳[J]. 物理学报,2012,61(13):182-187. CAO Shiying,MENG Fei,LIN Baike,et al. Long time precision locking Er-doped fiber femtosecond optical frequency comb[J]. Acta Physica Sinica,2012,61(13):182-187. [32] 谢鹏. 微腔光频梳及其在微波信号产生中的应用研究[D]. 西安:中国科学院西安光学精密机械研究所,2020. XIE Peng. Research on microcavity optical frequency comb and its application on microwave signal generation[D]. Xi’an:Xi’an Institute of Optics & Precision Mechanics,Chinese Academy of Sciences,2020. [33] GORDON E I,RIGDEN J D. The fabry-perot electrooptic modulator[J]. Bell Labs Technical Journal,2013,42(1):155-179. [34] XIAO S J,HOLLBERG L,NEWBURY N R,et al. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator[J]. Optics Express,2008,16(12):8498-8508. [35] ZHANG M,BUSCAINO B,WANG C,et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature,2019,568(7752):373-377. [36] ARMANI D K,KIPPENBERG T J,SPILLANE S M,et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature,2003,421(6926):925-928. [37] KIPPENBERG T J,SPILLANE S M,VAHALA K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters,2004,93(8):83901-83904. [38] DEL'HAYE P,SCHLIESSER A,ARCIZET O,et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature,2007,450(7173):1214-1217. [39] LEVY J S,GONDARENKO A,FOSTER M A,et al. CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects[J]. Nature Photonics,2010,4(1):37-40. [40] DEL'HAYE P,HERR T,GAVARTIN E,et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters,2011,107(6):63901. [41] DEL'HAYE P,PAPP S B,DIDDAMS S A. Hybrid electro-optically modulated micro-combs[J]. Physical Review Letters,2012,109(26):263901. [42] WANG C Y,HERR T,DEL'HAYE P,et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications,2013,4(1):2335. [43] HERR T,BRASCH V,JOST J D,et al. Temporal solitons in optical microresonators[J]. Nature Photonics,2014,8(2):145-152. [44] XUE X,XUAN Y,LIU Y,et al. Mode-locked dark pulse Kerr combs in nor-mal-dispersion microresonators[J]. Nature Photonics,2015,9(9):594-600. [45] PFEIFFER M,HERKOMMER C,LIU J Q,et al. Octave-spanning dissipative Kerr soli-ton frequency combs in Si3N4 microresonators[J]. Optica,2017,4(7):684-691. [46] XUE X,LEO F,XUAN Y,et al. Second- harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation[J]. Light:Science & Applications,2017,6(4):e16253. [47] YAO B,HUANG S,LIU Y,et al. Gate-tunable frequency combs in graphene-nitride microresonators[J]. Nature,2018,558(7710):410-414. [48] KARPOV M,PFEIFFER M H P,LIU J,et al. Photonic chip-based soliton frequency combs covering the biological imaging window[J]. Nature Communications,2018,9(1):1146. [49] HE Y,YANG Q F,LING J W,et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica,2019,6(9):1138-1144. [50] SAYSON N L B,BI T,NG V,et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators[J]. Nature Photonics,2019,13(10):701-706. [51] ZHOU H,GENG Y,CUI W,et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light:Science & Applications,2019,8(1):50. [52] CHEN H,JI Q,WANG H,et al. Chaos-assisted two-octave-spanning microcombs[J]. Nature Communications,2020,11(1):2336. [53] XIANG C,LIU J Q,GUO J,et al. Laser soliton microcombs heterogeneously integrated on silicon[J]. Science,2021,373(6550):99. [54] WENG H,AFRIDI A A,LI J,et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons[J]. APL Photonics,2022,7(6):66103. [55] STERN B,JI X,OKAWACHI Y,et al. Battery-operated integrated frequency comb generator[J]. Nature,2018,562(7727):401-405. [56] SHEN B,CHANG L,LIU J,et al. Integrated turnkey soliton microcombs[J]. Nature,2020,582(7812):365-369. [57] WANG W,ZHANG W,CHU S T,et al. Repetition Rate Multiplication Pulsed Laser Source Based on a Microring Resonator[J]. ACS Photonics,2017,4(7):1677-1683. [58] WANG W,ZHANG W,LU Z,et al. Self-locked orthogonal polarized dual comb in a microresonator[J]. Photonics Research,2018,6(5):363. [59] WANG X,XIE P,WANG W,et al. Program-controlled single soliton microcomb source[J]. Photonics Research,2021,9(1):66. [60] LU Z,CHEN H,WANG W,et al. Synthesized soliton crystals[J]. Nature Communications,2021,12(1):3179. [61] SHU H,CHANG L,TAO Y,et al. Microcomb-driven silicon photonic systems[J]. Nature,2022,605(7910):457-463. [62] YI X,YANG Q,YANG K Y,et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica,2015,2(12):1078. [63] QIN C,JIA K,LI Q,et al. Electrically controllable laser frequency combs in graphenefibre microresonators[J]. Light:Science & Applications,2020,9(1):185. [64] XIAO Z,LI T,CAI M,et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion[J]. Light:Science & Applications,2023,12(1):33. [65] WANG M,FAN L,LU Z,et al. Kerr frequency comb and stimulated raman comb covering S+C+L+U band based on a packaged silica spherical microcavity[J]. Journal of Lightwave Technology,2023,41(1):199-208. [66] WAN S,NIU R,WANG Z Y,et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators[J]. Photonics Research,2020,8(8):1342-1349. [67] SHU F,ZHANG P,QIAN Y,et al. A mechanically tuned Kerr comb in a dispersion engineered silica microbubble resonator[J]. Science China Physics,Mechanics & Astronomy,2020,63(5):254211. [68] QU Z,LIU X,ZHANG C,et al. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation[J]. Optics Express,2023,31(2):3005. [69] WU H,ZHANG F,MENG F,et al. Absolute distance measurement in a combined dispersive interferometer using a femtosecond pulse laser[J]. Measurement Science & Technology,2016,27(1):15202. [70] WU H,ZHANG F,LIU T,et al. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry[J]. Optics Express,2016,24(21):24361. [71] 刘亭洋. 飞秒光学频率梳脉冲啁啾干涉绝对测距研究[D]. 天津:天津大学,2017. LIU Tingyang. Study on absolute ranging by chirped pulse interferometry using femtosecond optical frequency comb[D]. Tianjin:Tianjin University,2017. [72] WU H,ZHANG F,LIU T,et al. Absolute distance measurement by chirped pulse in-terferometry using a femtosecond pulse laser[J]. Optics Express,2015,23(24):31582. [73] 赵显宇. 基于电光调制光学频率梳的精密测距技术研究[D]. 天津:天津大学,2020. ZHAO Xianyu. Research on precise ranging technologies based on electro-optic frequency combs[D]. Tianjin:Tianjin University,2020. [74] DOLOCA N R,MEINERS-HAGEN K,WEDDE M,et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Measurement Science & Technology,2010,21(11):115302. [75] LIU Y,YANG L,GUO Y,et al. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement[J]. Optics and Lasers in Engineering,2018,101:35-43. [76] ZHENG J,WANG Y,WANG X,et al. Optical ranging system based on multiple pulse train interference using soliton microcomb[J]. Applied Physics Letters,2021,118(26):261106. [77] HOCHREIN T,WILK R,MEI M,et al. Optical sampling by laser cavity tuning[J]. Op-tics Express,2010,18(2):1613-1617. [78] NAKAJIMA Y,MINOSHIMA K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Optics Express,2015,23(20):25979-25987. [79] 张天宇,曲兴华,张福民,等. 基于扫频采样的飞秒激光大尺寸测距方法研究[J]. 光谱学与光谱分析,2019,39(9):2708-2712. ZHANG Tianyu,QU Xinghua,ZHANG Fumin,et al. Study on the large-scale distance measurement method for femtosecond laser based on frequency scanning and optical sampling[J]. Spectroscopy and Spectral Analysis,2019,39(9):2708-2712. [80] JOO W D,KIM S,PARK J,et al. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures[J]. Optics Express,2013,21(13):15323-15334. [81] WANG Y,XU G,XIONG S,et al. Large-field step-structure surface measurement using a femtosecond laser[J]. Optics Express,2020,28(15):22946. [82] ZHANG H,WEI H,WU X,et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling[J]. Optics Express,2014,22(6):6597-6604. [83] ZHOU S,XIONG S,ZHU Z,et al. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement[J]. Optics Express,2019,27(16):22868. [84] HU D,WU Z,CAO H,et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications,2021,482:126566. [85] XIA H,ZHANG C. Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry[J]. Optics express,2010,18(5):4118-4129. [86] ZHANG H,WU X,WEI H,et al. Dual-comb reciprocal temporal scanning for absolute distance measurement[C]//Conference on Lasers and Electro Optics,2015:1-2. [87] ZHANG H,WU X,WEI H,et al. Compact Dual-Comb Absolute Distance Ranging with an Electric Reference[J]. IEEE Photonics Journal,2015,7(3):1-8. [88] WU G,XIONG S,NI K,et al. Parameter optimization of a dual-comb ranging system by using a numerical simulation method[J]. Optics express,2015,23(25):32044-32053. [89] SHI H,SONG Y,WANG C,et al. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule[J]. Optics letters,2018,43(7):1623-1626. [90] 梁飞,宋有建,师浩森,等. 双飞秒激光测距系统的测量精度分析[J]. 光电子·激光,2015,26(8):1553-1560. LIANG Fei,SONG Youjian,SHI Haosen,et al. Measurement precision analysis for the rapid ranging systems based on dual femtosecond lasers[J]. Journal of Optoelectronics·Laser,2015,26(8):1553-1560. [91] SHI H,SONG Y,YU J,et al. Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling[J]. Optics Express,2017,25(1):10-19. [92] 吴冠豪,周思宇,杨越棠,等. 双光梳测距及其应用[J]. 中国激光,2021,48(15):250-267. WU Guanhao,ZHOU Siyu,YANG Yuetang,et al. Dual-comb ranging and its applications[J]. Chinese Journal of Lasers,2021,48(15):250-267. [93] 胡坤,黎尧,纪荣祎,等. 新型飞秒激光跟踪仪中飞秒激光测距研究[J]. 仪表技术与传感器,2015(6):28-30. HU Kun,LI Yao,JI Rongyi,et al. Distance measurement of femtosecond laser in new type femtosecond laser tracker[J]. Instrument Technique and Sensor,2015(6):28-30. [94] SNIGIREV V,RIEDHAUSER A,LIHACHEV G,et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature,2023,615(7952):411-417. [95] YE Z,JIA H,HUANG Z,et al. Foundry manufacturing of tight-confinement,dispersion-engineered,ultralow-loss silicon nitride photonic integrated circuits[J]. Photonics Research,2023,11(4):558-568. [96] CHEN R,SHU H,SHEN B,et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos[J]. Nature Photonics,2023,3:1-9. |
[1] | ZHU Jia;LI Xingfei;TAN Wenbin;XIANG Hongbiao;CHEN Cheng. Method of Geometric Error Detection for Measuring Machine Based on Laser Interferometer [J]. , 2010, 46(10): 25-30. |
[2] | FANG Suping;KOMORI Masaharu;KUBO Aizoh;MEI Xuesong. Ray Tracing Method for Optical System of Interferometry Measurement Used for Form Deviation of Precise Complex Surface of Machine Parts [J]. , 2009, 45(2): 170-177. |
[3] | FANG Suping;KOMORI Masaharu;KUBO Aizoh;MEI Xuesong. Precision Simulation Method for Images of Interference Fringe Pattern in Complex Optical System [J]. , 2009, 45(1): 244-252. |
[4] | Xue Haitao;Li Huan;Li Junyue;Liu Jinhe. THEORETIC CALCULATION OF ARC PLASMA REFRACTIVE INDEX [J]. , 2004, 40(8): 49-53,5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||