Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (20): 34-63.doi: 10.3901/JME.2023.20.034
Previous Articles Next Articles
HUANG Qingxue1,2,3
Received:
2023-07-31
Revised:
2023-09-22
Online:
2023-10-20
Published:
2023-12-08
CLC Number:
HUANG Qingxue. Research Progress on Key Equipment and Technology of High Quality Steel Plate and Strip Rolling[J]. Journal of Mechanical Engineering, 2023, 59(20): 34-63.
[1] 康永林. “十三五”中国轧钢技术进步及展望[J]. 钢铁,2021,56(10):1-15. KANG Yonglin. China steel rolling technology progress in the 13th five-year plan and prospection[J]. Iron and Steel,2021,56(10):1-15. [2] 袁国,王国栋. 高品质钢铁材料轧制加工新技术研究进展及发展趋势[J]. 轧钢,2022,39(6):12-28. YUAN Guo,WANG Guodong. Research progress and development trend of new technology for rolling and processing of high-quality steel materials[J]. Steel Rolling,2022,39(6):12-28. [3] 王国栋,刘相华,王君. 我国中厚板生产设备、工艺技术的发展[J]. 中国冶金,2004(9):3-10. WANG Guodong,LIU Xianghua,WANG Jun. The development of production technologies and equipment for steel plate in China [J]. China Metallurgy,2004(9):3-10. [4] KUMAR P,MAITY K P,DASGUPTA A,et al. Investigation on the genesis of the shape deformation of plates in new plate mill,Rourkela steel plant[J]. Materials Today:Proceedings,2020,33:5582-5585. [5] 王峰,刘方方,郑宇. 国内中厚板生产现状与工艺变化[J]. 云南冶金,2019,48(6):61-65. WANG Feng,LIU Fangfang,ZHENG Yu. The production status and process change on domestic medium plate[J]. Yunnan Metallurgy,2019,48(6):61-65. [6] 李云山. 中厚板轧机市场现状及发展趋势分析[J]. 一重技术,2023(3):54-57. LI Yunshan. Analysis of market status and development trend of plate mill [J]. CFHI Technology,2023(3):54-57. [7] 袁建光,杨敏,贺达伦. 宝钢5 m宽厚板轧机采用的技术及装备[J]. 宝钢技术,2004(2):5-9. YUAN Jianguang,YANG Min,HE Dalun. New technologies and equipment applied to Baosteel 5 m heavy plate mill[J]. Baosteel Technology,2004(2):5-9. [8] 矫志杰,何纯玉,丁敬国,等. 中厚板轧机平面形状控制技术的工业推广应用[J]. 钢铁,2019,54(1):49-55. JIAO Zhijie,HE Chunyu,DING Jingguo,et al. Industrial popularization and application of plan view pattern control technology for plate mill[J]. Iron and Steel,2019,54(1):49-55. [9] 王涛,黄庆学,申光宪,等. 四辊轧机叼板窜辊问题的解析[J]. 钢铁,2017,52(11):81-86. WANG Tao,HUANG Qingxue,SHEN Guangxian,et al. Analysis on problem of plate biting and roll shifting in four-high rolling mill [J]. Iron and Steel,2017,52(11):81-86. [10] 矫志杰,何纯玉,赵忠,等. 中厚板轧制过程高精度智能化控制系统的研发进展与应用[J]. 轧钢,2022,39(6):52-59,66. JIAO Zhijie,HE Chunyu,ZHAO Zhong,et al. Research progress and application of high precision intelligent control system for plate rolling [J]. Steel Rolling,2022,39(6):52-59,66. [11] 黄庆学,申光宪,陈占福,等. 轧机结构设计的新概念[J]. 太原重型机械学院学报,2002(3):241-244,250. HUANG Qingxue,SHEN Guangxian,CHEN Zhanfu,et al. A new design concept for modern rolling mill [J]. Journal of Taiyuan Heavy Machinery Institute,2002(3):241-244,250. [12] 王建梅,黄庆学,丁光正. 轧机油膜轴承润滑理论研究进展[J]. 润滑与密封,2012,37(10):112-116. WANG Jianmei,HUANG Qingxue,DING Guangzheng. Advances on mill oil-film bearing lubrication theory research [J]. Lubrication Engineering,2012,37(10):112-116. [13] 黄庆学,申光宪,陈占福,等. 宝钢2050mm轧机组合轴承载荷特性的边界元法解析及试验研究[J]. 机械工程学报,2001(2):43-47. HUANG Qingxue,SHEN Guangxian,CHEN Zhanfu,et al. Analysis of the distribution the pressure of combined cylindrical roller/taper roller bearings of 2050mm rolling mill used in Baogang by 3D-bemand researching the test[J]. Journal of Mechanical Engineering,2001(2):43-47. [14] 杨霞,鄢闯,黄庆学. 滚动体几何相似条件在轴承边界元法中的应用[J]. 计算力学学报,2015,32(3):404-410. YANG Xia,YAN Chuang,HUANG Qingxue. Application of geometrically similar roller conditions in bearing boundary element method[J]. Chinese Journal of Computational Mechanics,2015,32(3):404-410. [15] 黄庆学,申光宪,李慧剑,等. 大型轧机油膜轴承锥套损伤问题研究[J]. 计算力学学报,2005(3):366-369. HUANG Qingxue,SHEN Guangxian,LI Huijian,et al. Study on contact damage of sleeve of oil-film bearing in rolling mill[J]. Chinese Journal of Computational Mechanics,2005(3):366-369. [16] 黄庆学,王建梅,静大海,等. 油膜轴承锥套过盈装配过程中的压力分布及损伤[J]. 机械工程学报,2006,42(10):102-108. HUANG Qingxue,WANG Jianmei,JING Dahai,et al. Pressure distribution and damages on oil-film bearing sleeve during the process of interference fit[J]. Journal of Mechanical Engineering,2006,42(10):102-108. [17] 黄庆学,李璞,王建梅,等. 宏微观跨尺度下的锥套运行力学机理研究[J]. 机械工程学报,2016,52(14):213-220. HUANG Qingxue,LI Pu,WANG Jianmei,et al. Study on the operating mechanics mechanism of sleeve on macro-micro cross-scale[J]. Journal of Mechanical Engineering,2016,52(14):213-220. [18] 左大为,陈秀敏,申光宪. 轧机压下螺纹副承载特性测试研究[J]. 中国机械工程,2006(3):307-311. ZUO Dawei,CHEN Xiumin,SHEN Guangxian. Experimental study on the load distribution[J]. China Mechanical Engineering,2006(3):307-311. [19] 刘永锋,赵春江,周研,等. 基于热-结构耦合的轧机压下螺纹副强度分析[J]. 机械强度,2017,39(1):214-220. LIU Yongfeng,ZHAO Chunjiang,ZHOU Yan,et al. Analysis on strength for the mill pressure screw pairs based on thermal-structural coupling [J]. Journal of Mechanical Strength,2017,39(1):214-220. [20] 冀俊杰,黄庆学. 轧机压下螺纹副不等厚螺牙面力场的多极边界元解析[J]. 重型机械,2007,5(1):10-14: JI Junjie,HUANG Qingxue. Frictional contact multipole-BEM analysis of traction field in screw pairs[J]. Heavy Machinery,2007,5(1):10-14. [21] 陈秀敏,申光宪,黄庆学. 轧机压下螺纹副回松机理试验和铜螺母螺牙塑扁鼓包分析[J]. 机械工程学报,2007,43(4):168-172. CHEN Xiumin,SHEN Guangxian,HUANG Qingxue. Rapping experiment of rolling mill pressure screw-pairs and plastic bulge of nut teeth analysis[J]. Journal of Mechanical Engineering,2007,43(4):168-172. [22] 刘志芳. 基于曲率积分法的板材矫直理论研究[D]. 重庆:重庆大学,2014. LIU Zhifang. Study of leveling theory based on curvature integration method for plates [D]. Chongqing:Chongqing University,2014. [23] 桂海莲,黄庆学,马立峰,等. 多极边界元法在轧件矫直变形分析中的应用[J]. 重庆大学学报,2010,33(5):95-99. GUI Hailian,HUANG Qingxue,MA Lifeng,et al. Application of FM-BEM in rolled piece deformation analysis of straightening process[J]. Journal of Chongqing University,2010,33(5):95-99. [24] 王效岗,黄庆学,马勤. 中厚板的横向波浪矫直研究[J]. 中国机械工程,2009,20(1):95-98. WANG Xiaogang,HUANG Qingxue,MA Qin. Research on wave leveling model in plate steel [J]. China Mechanical Engineering,2009,20(1):95-98. [25] 桂海莲,李曜,李强,等. 中厚板矫直过程中中性层偏移动态研究[J]. 工程设计学报,2014,21(5):444-448,493. GUI Hailian,LI Yao,LI Qiang,et al. Dynamic research of neutral layer offset of medium plate in straightening process [J]. Chinese Journal of Engineering Design,2014,21(5):444-448,493. [26] 黄庆学,桂海莲,李曜,等. 中厚板矫直过程中的中性层偏移规律分析[J]. 中国科技论文,2015,10(10):1178-1181. HUANG Qingxue,GUI Hailian,LI Yao,et al. Analysis of neutral layer offset in the straightening process of medium plate[J]. China Science Paper,2015,10(10):1178-1181. [27] 王效岗,黄庆学. 不锈钢热处理线用十五辊组合矫直机[J]. 轧钢,2008,25(6):31-33. WANG Xiaogang,HUANG Qingxue. Fifteen-roll combination leveler for stainless steel [J]. Steel Rolling,2008,25(6):31-33. [28] 王效岗,黄庆学,马勤. 十五辊组合矫直机矫直模型研究[J]. 四川大学学报(工程科学版),2008(6):181-185. WANG Xiaogang,HUANG Qingxue,MA Qin. Research of leveling model of fifteen roller combination leveler[J]. Journal of Sichuan University(Engineering Science Edition),2008(6):181-185. [29] 王效岗,马勤,黄庆学. 十五辊组合矫直机辊系优化方法[J]. 西安建筑科技大学学报(自然科学版),2008,40(6):880-884. WANG Xiaogang,MA Qin,HUANG Qingxue. Optimization of the fifteen-roller combination level roller parameter [J]. Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2008,40(6):880-884. [30] 马立峰,黄庆学,冀俊杰. 国内外中厚板滚切剪装备技术现状[J]. 重型机械,2009(2):4-8. MA Lifeng,HUANG Qingxue,JI Junjie. State of plate rolling shear at home and abroad [J]. Heavy Machinery,2009(2):4-8. [31] MURAKAWA M,LU Y. Precision cutting of sheets by means of a new shear based on rolling motion[J]. Journal of Materials Processing Technology,1997,66(1-3):232-239. [32] SUMSKII S N,GRACHEV V G,SOLODOVNIK F S,et al. The role of VNIImetmash in designing and introducing cross-cutting shears for flat-rolled products[J]. Metallurgist,2004,48(3-4):118-121. [33] 黄庆学,马立峰,李进宝,等. 新型滚切剪非对称曲柄机构原理[J]. 机械工程学报,2008(5):119-123. HUANG Qingxue,MA Lifeng,LI Jinbao,et al. Principle of asymmetric crank mechanism of new-type rolling shear[J]. Journal of Mechanical Engineering,2008(5):119-123. [34] 马立峰,黄庆学,李颖,等. 新型钢板滚切剪剪切机构运动学分析[J]. 工程设计学报,2007(5):395-399,403. MA Lifeng,HUANG Qingxue,LI Ying,et al. Analysis on kinematics simulation of new-type steel rolling shear [J]. Journal of Engineering Design,2007(5):395-399,403. [35] 马立峰,黄庆学,李颖,等. 新型滚切剪空间剪切机构优化数学模型的建立及应用[J]. 四川大学学报(工程科学版),2008(2):170-174. MA Lifeng,HUANG Qingxue,LI Ying,et al. Establishment and application of mathematical model on spatial shear mechanism optimization of new-type steel rolling shear[J]. Journal of Sichuan University (Engineering Science Edition),2008(2):170-174. [36] 楚志兵,黄庆学,马立峰,等. 滚切式双边剪连杆机构的动力学仿真及实验研究[J]. 四川大学学报(工程科学版),2011,43(1):247-252. CHU Zhibin,HUANG Qingxue,MA Lifeng,et al. Experimental study and simulation of kinetics on linkage structure of rolling-cut bilateral shear[J]. Journal of Sichuan University (Engineering Science Edition),2011,43(1):247-252. [37] 马立峰,王刚,黄庆学,等. 复合连杆机构复演滚动轨迹的特性研究[J]. 中国机械工程,2013,24(7):877-881. MA Lifeng,WANG Gang,HUANG Qingxue,et al. Research on properties of compound linkage recapitulation rolling trace[J]. China Mechanical Engineering,2013,24(7):877-881. [38] 李玉贵,马立峰,黄庆学. 单轴双偏心非对称负偏置滚切剪研究[J]. 钢铁,2008(2):51-55. LI Yugui,MA Lifeng,HUANG Qingxue,et al. Research on rolling shear with single axle and asymmetric negative offset[J]. Iron and Steel,2008(2):51-55. [39] 马立峰,黄庆学,梁爱生,等. 双轴双偏心定尺滚切剪运动轨迹分析及计算机仿真[J]. 太原重型机械学院学报,2004(2):125-129. MA Lifeng,HUANG Qingxue,LIANG Aisheng,et al. The analysis of moving frace and computer simulation of cutting lengths rolling shear with double shaft and double eccentricity [J]. Journal of Taiyuan Heavy Machinery Institute,2004(2):125-129. [40] 张继东,楚志兵,常瑜,等. 滚切剪最大剪切力计算公式的研究[J]. 重型机械,2010(5):59-62. ZHANG Jidong,CHU Zhibing,CHANG Yu,et al. Formula build and industrial research for maximal shear stress of rolling shears [J]. Heavy Machinery,2010(5):59-62. [41] 韩贺永,乔永杰,李佳,等. 新型液压双边滚切剪机构数学模型的建立与验证[J]. 锻压技术,2018,43(1):124-128,159. HAN Heyong,QIAO Yongjie,LI Jia,et al. Establishing and verification of mathematical model for new hydraulic bilateral rolling shear mechanism [J]. Forging &Stamping Technology,2018,43(1):124-128,159. [42] 何安瑞,杨荃,陈先霖,等. 热带钢轧机线性变凸度工作辊的研制及应用[J]. 机械工程学报,2008,44(11):255-259. HE Anrui,YANG Quan,CHEN Xianlin,et al. Development and application of linearly variable crown work roll in hot strip mills[J]. Journal of Mechanical Engineering,2008,44(11):255-259. [43] DENG J,SUN J,PENG W,et al. Application of neural networks for predicting hot-rolled strip crown[J]. Applied Soft Computing,2019,78:119-131. [44] SONG C,CAO J,XIAO J,et al. Control strategy of multi-stand work roll bending and shifting on the crown for UVC hot rolling mill based on MOGPR approach[J]. Journal of Manufacturing Processes,2023,85:832-843. [45] PRINZ K,STEINBOECK A,KUGI A. Optimization-based feedforward control of the strip thickness profile in hot strip rolling[J]. Journal of Process Control,2018,64:100-111. [46] CAO J G,CHAI X T,LI Y L,et al. Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills[J]. Journal of Materials Processing Technology,2018,252:432-439. [47] LI L,XIE H,ZHANG T,et al. Understanding the regulation ability of roll bending on strip shape in a CVC-6 tandem cold mill using a 3D multiple stand FE model[J]. Journal of Manufacturing Processes,2023,101:1013-1031. [48] OMORI S,KAJIWARA T,HINO H,et al. Analysis of rolling load generated by pair crossed rolling mill[J]. Ironmaking & Steelmaking,2004,31(1):71-80. [49] 钱承,孙荣生,张柳柳,等. 冷连轧机组耦合振动模型及影响因素分析[J]. 机械工程学报,2021,57(12):208-216. QIAN Cheng,SUN Rongsheng,ZHANG Liuliu,et al. Coupled vibration model and influencing factors analysis of tandem cold rolling mill[J]. Journal of Mechanical Engineering,2021,57(12):208-216. [50] 宋君,任廷志,魏臻,等. 基于多目标优化的冷连轧工作辊窜辊优化控制[J]. 钢铁,2021,56(9):102-109. SONG Jun,REN Tingzhi,WEI Zhen,et al. Optimal control of work roll shifting in tandem coldrolling mill based on multi objective optimization[J]. Iron and Steel,2021,56(9):102-109. [51] WANG Y L,WANG J K,YIN C H,et al. Multi-objective optimization of rolling schedule for five-stand tandem cold mill[J]. IEEE Access,2020,8:80417-80426. [52] 杨杰,宋健,胡琦,等. 酸洗连轧生产线机组轧制功率建模及工艺参数优化[J]. 中国机械工程,2018,29(19):2371-2376. YANG Jie,SONG Jian,HU Qi,et al. Pickling-cold rolling production line power modeling and process parametersing optimization[J]. China Mechanical Engineering,2018,29(19):2371-2376. [53] HU Y J,SUN J,PENG W,et al. Nash equilibrium-based distributed predictive control strategy for thickness and tension control on tandem cold rolling system[J]. Journal of Process Control,2021,97:92-102. [54] 吴安民,曹苗苗. 1150mm六辊6机架冷连轧机组介绍[C]//2014年全国压力加工设备节能降耗及技术创新研讨会论文集. 中国金属学会,2014:150-152. WU Anmin,CAO Miaomiao. The introduction of 1150mm the 6-h six stands cold strip mill[C]//Proceedings of the 2014 National Symposium on Energy Conservation,Consumption Reduction,and Technological Innovation of Pressure Processing Equipment. The Chinese Society for Metals,2014:150-152. [55] 刘亚星,顾清,钱承,等. 冷轧超高强钢平直度与断面形状前馈控制技术[J]. 中国机械工程,2021,32(24):2981-2988. LIU Yaxing,GU Qing,QIAN Cheng,et al. Feedforward control technology for flatness and sectional shape of ultra high strength steel in six stand tandem cold mill[J]. China Mechanical Engineering,2021,32(24):2981-2988. [56] 刘相华,宋孟,孙祥坤,等. 极薄带轧制研究与应用进展[J]. 机械工程学报,2017,53(10):1-9. LIU Xianghua,SONG Meng,SUN Xiangkun,et al. Advances in research and application of foil rolling[J]. Journal of Mechanical Engineering,2017,53(10):1-9. [57] 赵军,孙静娜,武桐,等. 十八辊轧机板形调控性能仿真分析[J]. 塑性工程学报,2023,30(1):200-207. ZHAO Jun,SUN Jingna,WU Tong,et al. Simulation analysis of shape control performance of eighteen-high rolling mill[J]. Journal of Plasticity Engineering,2023,30(1):200-207. [58] REN Z K,FAN W W,HOU J,et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials,2019,12(11):1-13. [59] BEMPORAD A,BERNARDINI D,CUZZOLA F A,et al. Optimization based automatic flatness control in cold tandem rolling[J]. Journal of Process Control,2010,20(4):396. [60] WANG D C,LIU H M,LIU J. Research and development trend of shape control for cold rolling strip[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1248. [61] 刘宏民,于华鑫,王东城,等. 冷轧带钢板形测控技术的发展状况和关键问题[J]. 钢铁,2022,57(11):22-32. LIU Hongmin,YU Huaxin,WANG Dongcheng,et al. Development state and key problems on flatness measurement and control technology of cold strip steel rolling[J]. Iron and Steel,2022,57(11):22-32. [62] SHU Y F,XIONG C W,FAN S L. Interactive design of intelligent machine vision based on human-computer interaction mode[J]. Microprocessors and Microsystems,2020,75:1-5. [63] LUO Q W,FANG X X,LIU L,et al. Automated visual defect detection for flat steel surface:A Survey[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(3):626-644. [64] LIU W W,FENG Y F,YANG T S,et al. Theoretical and experimental research on the law of flexible roll profile electromagnetic control[J]. Journal of Materials Processing Technology,2018,262:308-318. [65] LIU W,FENG Y F,SUN J N,et al. Analysis of the thermal-mechanical problem in the process of flexible roll profile electromagnetic control[J]. International Journal of Heat and Mass Transfer,2018,120,447-457. [66] 任忠凯,郭雄伟,范婉婉,等. 精密极薄带轧制理论研究进展及展望[J]. 机械工程学报,2020,56(12):73-84. REN Zhongkai,GUO Xiongwei,FAN Wanwan,et al. Research progress and prospects of precision ultra-thin strip rolling theory[J]. Journal of Mechanical Engineering,2020,56(12):73-84. [67] REN Z,XIAO H,LIU X,et al. Experimental and theoretical analysis of roll flattening in the deformation zone for ultra-thin strip rolling[J]. Ironmaking & Steelmaking,2018,45(9):805-812. [68] 王家琪,刘晓,张增强,等. 基于非圆弧理论的精密极薄带轧制力快速预测[J/OL]. [2023-06-05]. 钢铁,https://kns.cnki.net/kcms2/article/abstract?v=wgPKIBh6aVndH1AyG_0a5ItKDa9hE-1zoZybjOnH67vhB4dIh4eIW12yBG4lKuyJjH9v1pxuMbsJtm2DDfKp583JIjaIKsoOKd2KO-se-1x8GfJWEqkB4mLiT9tPJGWI9yN0tAhz8-M=&uniplatform=NZKPT&language=CHS. DOI:10.13228/j.boyuan.issn0449-749x.20230213. WANG Jiaqi,LIU Xiao,ZHANG Zengqiang,et al. Rapid prediction of rolling force of precision thin strip based on noncircular arc theory [J/OL].[2023-06-05]. Iron & Steel,https://kns.cnki.net/kcms2/article/abstract?v=wgPKIBh6aVndH1AyG_0a5ItKDa9hE-1zoZybjOnH67vhB4dIh4eIW12yBG4lKuyJjH9v1pxuMbsJtm2DDfKp583JIjaIKsoOKd2KO-se-1x8GfJWEqkB4mLiT9tPJGWI9yN0tAhz8-M=&uniplatform=NZKPT&language=CHS. DOI:10.13228/j.boyuan.issn0449-749x.20230213. [69] STONE M D. Rolling of thin strip[J]. Iron and Steel Engineer,1953,30(2):61-74. [70] XIAO H,REN Z,LIU X. New mechanism describing the limiting producible thickness in ultra-thin strip rolling[J]. International Journal of Mechanical Sciences,2017,133:788-793. [71] LIU X,XIAO H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling[J]. Journal of Materials Processing Technology,2020,278:116537. [72] YUN K H,SHIN T J,HWANG S M. A finite element-based on-line model for the prediction of deformed roll profile in flat rolling[J]. ISIJ International. 2007,47(9):1300-1308. [73] ROARK R J. Formulas for stress and strain[M]. New York:McGraw-Hill,1954. [74] TOZAWA Y,UEDA M. Analysis to obtain the pressure and distribution from the contour of deformed roll[J]. Journal of the Japan Society for Technology of Plasticity. 1970,11(108):29-37. [75] YUAN Z,XIAO H,XIE H. Practice of improving roll deformation theory in strip rolling process based on boundary integral equation method[J]. Metallurgical and Materials Transactions A,2014,45(2):1019-1026. [76] XIAO H,YUAN Z W,WANG T. Roll Flattening analytical model in flat rolling by boundary integral equation method[J]. Journal of Iron and Steel Research International,2013,20(10):39-45. [77] REN Z K,XIAO H,WANG T,et al. Plate profile control during ultra-thin strip rolling utilizing work roll edge contact[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(1):28. [78] LIAN J C. Analysis of profile and shape control in flat rolling[C[//Proceeding of the First International Conference on Steel Rolling Tokyo,Japan,1980:713-724. [79] REN Z K,WANG T,FAN W W. Establishment of the tension stress model considering metal lateral flow for foil rolling[J]. Meccanica,2019,54(1-2):261-270. [80] FU M W,WANG J L. Size effects in multi-scale materials processing and manufacturing[J]. International Journal of Machine Tools and Manufacture,2021,167:103755. [81] ZHANG D,LI H,GUO X,et al. An insight into size effect on fracture behavior of Inconel 718 cross-scaled foils[J]. International Journal of Plasticity,2022,153:103274. [82] CAI W,SUN C,WANG C,et al. Modelling of the intergranular fracture of TWIP steels working at high temperature by using CZM-CPFE method[J]. International Journal of Plasticity,2022,156:103366. [83] REN Z K,FAN W W,HOU J,et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials,2019,12(11):1819. [84] 范婉婉. 304不锈钢极薄带轧制变形区细观力学行为研究[D]. 太原:太原理工大学,2020. FAN Wanwan. Study on micromechanical behavior of 304 Ultra-thin stainless steel strip in rolling deformation zone[D]. Taiyuan:Taiyuan University of Technology,2020. [85] Dong H R,LI X Q,LI Y,et al. A review of electrically assisted heat treatment and forming of aluminum alloy sheet[J]. The International Journal of Advanced Manufacturing Technology,2022,120(11-12):7079-7099. [86] REN Z K,GUO X W,LIU X,et al. Effect of pulse current treatment on interface structure and mechanical behavior of TA1/304 clad plates[J]. Materials Science and Engineering:A,2022,850:143583. [87] 任忠凯,郭雄伟,李宁,等. 脉冲电流对TA1/304复合板结合性能的改性机制研究[J]. 机械工程学报,2022,58(6):62-72. REN Zhoangkai,GUO Xiongwei,LI Ning,et al. Study on the modification mechanism of pulse current on the bonding properties of TA1/304 composite plate[J]. Journal of Mechanical Engineering,2022,58(6):62-72. [88] GUO X W,REN Z K,MA X,et al. Effect of temperature and reduction ratio on the interface bonding properties of TC4/304 plates manufactured by EA rolling[J]. Journal of Manufacturing Processes,2021,64:664-673. [89] SHAO G,LI H,ZHAN M. A review on ultrasonic-assisted forming:Mechanism,model,and process[J]. Chinese Journal of Mechanical Engineering,2021,34(1):99. [90] WANG T,WEI X,ZHANG H,et al. Plastic deformation mechanism transition with solute segregation and precipitation of 304 stainless steel foil induced by pulse current[J]. Materials Science and Engineering:A,2022,840:142899. [91] 魏晓蕾. 304不锈钢薄带电致塑性变形机制及轧制工艺研究[D]. 太原:太原理工大学,2021. WEI Xiaolei. Study on electroplastic deformation mechanism and rolling process of 304 stainless steel strip[D]. Taiyuan:Taiyuan University of Technology,2021. [92] FAN WW,REN Z K,WEI S,et al. Effect of high energy electric pulse on microstructure and mechanical properties of pre-deformed SUS 304 ultra-thin strip[J]. Materials Science and Engineering:A,2023:145364. [93] 范婉婉,刘奇,刘文文,等. 脉冲电流辅助SUS304极薄带拉伸变形研究[J]. 中国机械工程,2023,34(4):475-480,489. FAN Wanwan,LIU Qi,LIU Wenwen,et al. Research on pulse current-assisted tensile deformation of SUS304 ultra-thin strips[J]. China Mechanical Engineering,2023,34(4):475-480,489. [94] 李宁,廖席,段浩杰,等. 超声振动辅助SUS304薄带塑性变形的Johnson-Cook本构模型[J]. 塑性工程学报,2023,30(3):162-168. LI Ning,LIAO Xi,DUAN Haojie,et al. Johnson-Cook constitutive model of plastic deformation of SUS304 thin strip assisted by ultrasonic vibration[J]. Journal of Plasticity Engineering,2023,30(3):162-168. [95] 李宁. 超声对SUS304精密薄带轧制变形和表面粗糙度的影响研究[D]. 太原:太原理工大学,2022. LI Ning. Influence of ultrasonic on rolling deformation and surface roughness of SUS304 precision thin strip[D]. Taiyuan:Taiyuan University of Technology,2022. [96] 季策,黄华贵. 双金属复合管复合机理及制备工艺研究进展[J]. 特种铸造及有色合金,2018(12):1300-1306. JI Ce,HUANG Huagui. Research progresses on in bonding mechanism and preparation process of bimetallic clad pipes[J]. Special-cast and Non-ferrous Alloys,2018(12):1300-1306. [97] 季策,黄华贵,孙静娜,等. 层状金属复合板带铸轧复合技术研究进展[J]. 中国机械工程,2019,30(15):1873-1881. JI Ce,HUANG Huagui,SUN Jingna,et al. Research progresses on cast-rolling bonding technology of laminated metal clad strips[J]. China Mechanical Engineering,2019,30(15):1873-1881. [98] 季策,许石民,黄华贵. 金属包覆材料固-液铸轧复合技术研究进展[J]. 精密成形工程,2021,13(6):12-22. JI Ce,XU Shimin,HUANG Huagui. Research progress of solid-liquid cast-rolling bonding technology for metal cladding materials[J]. Journal of Netshape Forming Engineering,2021,13(6):12-22. [99] 周生刚,王涛,孙丽达. 金属层状复合材料的研究现状[J]. 热加工工艺,2016,45(10):15-20. ZHOU Shenggang,WANG Tao,SUN Lida. Research status of metal laminar composite[J]. Hot Working Technology,2016,45(10):15-20. [100] 王涛,齐艳阳,刘江林,等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报,2020,52(6):42-56. WANG Tao,QI Yanyang,LIU Jianglin,et al. Research progress of metal laminates roll bonding process at home and abroad[J]. Journal of Harbin Institute of Technology,2020,52(6):42-56. [101] WANG T,LI S,REN Z K,et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll[J]. Materials Letters,2019,234:79-82. [102] HAO P J,LIU Y M,WANG Z H,et al. Analysis of force and deformation parameters in corrugated clad rolling[J]. International Journal of Mechanical Sciences,2023,243:108042. [103] WANG T,LIU W L,LIU Y M,et al. Formation mechanism of dynamic multi-neutral points and cross shear zones in corrugated rolling of Cu/Al laminated composite[J]. Journal of Materials Processing Technology,2021,295:117157. [104] WANG T,GAO X Y,ZHANG Z X,et al. Interfacial bonding mechanism of Cu/Al composite plate produced by corrugated cold roll bonding[J]. Rare Metals,2021,40(5):1284-1293. [105] BURTON M S. Metallurgical principles of metal bonding[J]. Welding Journal,1954,33(11):1051. [106] WANG T,LI S,REN Z K,et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll[J]. Materials Letters,2019,234:79-82. [107] WANG T,WANG Y L,BIAN L P,et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling[J]. Materials Science & Engineering A,2019,765:138318. [108] LIU Y X,LIU Y M,WANG Z H,et al. Stress analysis and microstructure evolution of the Cu/Al composite plate during corrugated rolling[J]. Transactions of Nonferrous Metals Society of China,2023,33(5):1460-1471. [109] 刘畅. 钛/铝复合板波-平冷轧工艺及组织性能研究[D]. 太原:太原理工大学,2021. LIU Chang. Corrugated-flat cold rolling process and microstructure and properties of Ti/Al composite plate [D]. Taiyuan:Taiyuan University of Technology,2021. [110] LI S,LUO C,LIU Z D,et al. Interface characteristics and mechanical behavior of Cu/Al clad plate produced by the corrugated rolling technique[J]. Journal of Manufacturing Processes,2020,60:75-85. [111] WANG T,LI S,NIU H,et al. EBSD research on the interfacial microstructure of the corrugated Mg/Al laminated material[J]. Journal of Materials Research and Technology,2020,9(3):5840-5847. [112] WANG T,WANG Y L,BIAN L P,et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling[J]. Materials Science and Engineering A,2019,765:138318. [113] GUO X W,REN Z K,MA X B,et al. Effect of temperature and reduction ratio on the interface bonding properties of TC4/304 plates manufactured by EA rolling[J]. Journal of Manufacturing Processes,2021,64:664-673. [114] CHEN K,LIU W W,WANG T,et al. Experimental research on the technology of two-pass different temperature rolling for thick steel/aluminum/aluminum- alloy composite plate[J]. The International Journal of Advanced Manufacturing Technology,2022,120:7689-7705. [115] REN Z K,GUO X W,LIU X,et al. Effect of pulse current treatment on interface structure and mechanical behavior of TA1/304 clad plates[J]. Materials Science & Engineering A,2022,850:143583. [116] WU Y,WANG T,REN Z K,et al. Evolution mechanism of microstructure and bond strength based on interface diffusion and IMCs of Ti/steel clad plates fabricated by double-layered hot rolling[J]. Journal of Materials Processing Technology,2022,310:117780. [117] 罗超,刘晓,任忠凯,等. 金属复合极薄带制备工艺研究进展[J]. 材料导报,2023,37(12):201-206. LUO Chao,LIU Xiao,REN Zhongkai,et al. Research progress in preparation of ultra-thin metal composite foil[J]. Materials Reports,2023,37(12):201-206. [118] 于庆波,刘相华,孙莹,等. 室温下金属铝的组合成形轧制[J]. 中国科学:技术科学,2019,49(4):411-418. YU Qingbo,LIU Xianghua,SUN Ying,et al. Combination forming rolling of metal aluminum at room temperature[J]. Scientia Sinica Technologica,2019,49(4):411-418. [119] BATTEZZATI L,PAPPALEPORE P,DURBIANO F,et al. Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing[J]. Acta Materialia,1999,47(6):1901-1914. [120] YOUSEFI M V,TOROGHINEJAD M R,REZAEIAN A. Mechanical properties and microstructure evolutions of multilayered Al–Cu composites produced by accumulative roll bonding process and subsequent annealing[J]. Materials Science & Engineering A,2014,601:40-47. [121] 王振华,刘元铭,王涛,等. 粗轧过程中轧制力和宽展的预测与分析[J]. 钢铁,2022,57(9):95-102. WANG Zhenhua,LIU Yuanming,WANG Tao,et al. Prediction and analysis of rolling force and width spread in rough rolling[J]. Iron and Steel,2022,57(9):95-102. [122] LIU Y M,WANG Z H,WANG T,et al. Prediction and analysis of the force and shape parameters in variable gauge rolling[J]. Chinese Journal of Mechanical Engineering,2022,35(4):79-92. [123] LIU Y M,WANG Z H,WANG T,et al. Prediction and mechanism analysis of the force and shape parameters using cubic function model in vertical rolling[J]. Journal of Materials Processing Technology,2022,303:117500. [124] LIU Y M,HAO P J,WANG T,et al. Mathematical model for vertical rolling deformation based on energy method[J]. International Journal of Advanced Manufacturing Technology,2020,107:875-883. [125] LIU Y M,SUN J,ZHANG D H,et al. Three-dimensional analysis of edge rolling based on dual-stream function velocity field theory[J]. Journal of Manufacturing Processes,2018,34(1):349-355. [126] 刘元铭,王振华,王涛,等. 热轧带钢出口凸度数据驱动建模及智能化预测分析[J]. 中国机械工程,2020,31(22):2728-2733. LIU Yuanming,WANG Zhenhua,WANG Tao,et al. Data-driven modeling and intelligent prediction analysis for hot strip outlet crowns[J]. China Mechanical Engineering,2020,31(22):2728-2733. [127] WANG T,HUANG Q X,XIAO H,et al. Modification of roll flattening analytical model based on the plane assumption[J]. Chinese Journal of Mechanical Engineering,2018,31(1):46. [128] LIU W,LI T,WANG T,et al. Analysis of the influence of roll size change on electromagnetic heat conversion capacity and roll profile control characteristics in the RPECT[J]. International Journal of Heat and Mass Transfer,2022,189:122686. [129] WANG T,REN Z K,HE D P. Equivalent numerical algorithm for the strip-rolling process of a continuous variable crown mill using the coupled rigid-plastic finite element method[J]. Journal of Marine Science and Technology,2019,27(2):123-132. [130] WU S W,YANG J,LIU Z Y. Composition- processing-property correlation mining of Nb-Ti microalloyed steel based on industrial data[J]. Materials Transactions,2020,61(4):691-699. [131] 杨健,吴思炜. 基于机器学习的钢铁轧制过程性能预测[J]. 钢铁,2021,56(9):1-9. YANG Jian,WU Siwei. Property prediction of steel rolling process based on machine learning[J]. Iron and Steel,2021,56(9):1-9. [132] 王国栋,刘振宇,张殿华. RAL关于钢材热轧信息物理系统的研究进展[J]. 轧钢,2021,38(1):1-7. WANG Guodong,LIU Zhenyu,ZHANG Dianhua. Research progress on the cyberphysical system of steel hot rolling in RAL[J]. Steel Rolling,2021,38(1):1-7. [133] WANG Z H,LIU Y M,WANG T,et al. Prediction model of hot strip crown based on industrial data and hybrid the PCA-SDWPSO-ELM approach[J]. Soft Computing,2023,27:12483-12499. [134] SUN J,SHAN P,WEI Z,et al. Data-based flatness prediction and optimization in tandem cold rolling[J]. Journal of Iron and Steel Research International,2021,28:563-573. [135] 邵健,何安瑞,陈雨来,等. 热轧智能工厂构架设计与实践:有形与无形的统一[J]. 中国冶金,2022,32(1):1-10. SHAO Jian,HE Anrui,CHEN Yulai,et al. Framework design and practice of hot rolling intelligent plant:unity of tangible and intangible[J]. China Metallurgy,2022,32(1):1-10. [136] LIU Y,WANG X,SUN J,et al. Strip thickness and profile-flatness prediction in tandem hot rolling process using mechanism model‐guided machine learning[J]. Steel Research International,2023,94(1):2200447. [137] 张殿华,彭文,孙杰,等. 板带轧制过程中的智能化关键技术[J]. 钢铁研究学报,2019,31(2):174-179. ZHANG Dianhua,PENG Wen,SUN Jie,et al. Key intelligent technologies of steel strip rolling process[J]. Journal of Iron and Steel Research,2019,31(2):174-179. [138] 康永林,田鹏,朱国明. 热宽带钢无头轧制技术进展及趋势[J]. 钢铁,2019,54(3):1-8. KANG Yonglin,TIAN Peng,ZHU Guoming. Progress and trend on hot wide strip endless rolling technology[J]. Iron and Steel,2019,54(3):1-8. [139] SUN M H,GUO S P,ZHENG L K,et al. Research on twin-roll strip cast-rolling based on a new sectional roll surface heat transfer boundary condition[J]. Ironmaking & Steelmaking,2020,48(3):254-262. [140] 康永林,朱国明,陈贵江,等. 中国薄宽带钢无头轧制技术最新进展[J]. 钢铁,2023,58(7):1-8. KANG Yonglin,ZHU Guoming,CHEN Guijiang,et al. Latest development of wide thin strip endless rolling technology in China[J]. Iron and Steel,2023,58(7):1-8. [141] BARELLA S,BONDI E,DI CECCA C,et al. New perspective in steelmaking activity to increase competitiveness and reduce environmental impact[J]. La Metallurgia Italiana,2014,106(11):31-39 [142] 毛新平. 热轧板带近终形制造技术[M]. 北京:冶金工业出版社,2020. MAO Xinping. Near-net manufacturing technology of hot rolled strip[M]. Beijing:Metallurgical Industry Press,2020. [143] 彭艳. 冶金轧制设备技术数字化智能化发展综述[J]. 燕山大学学报,2020,44(3):218-237. PENG Yan. Review on development of digital and intelligent metallurgical rolling equipment technology[J]. Journal of Yanshan University,2020,44(3):218-237. [144] LIU C Y,BARELLA S,PENG Y,et al. Modeling and characterization of dynamic recrystallization under variable deformation states[J]. International Journal of Mechanical Sciences,2023,238:1-21. [145] XUAN D,ZHOU C,ZHOU Y,et al. Comparison of the casting process of 3.0% Si steel between the top side-pouring twin-roll casting and twin-roll strip casting[J]. The International Journal of Advanced Manufacturing Technology,2022,119(11-12):7751-7764. [146] JI C,HUANG H G. A review of the twin-roll casting process for complex section products[J]. ISIJ International,2020,60(11):1-11. |
[1] | DONG Zhigang, WANG Zhongwang, RAN Yichuan, BAO Yan, KANG Renke. Advances in Ultrasonic Vibration-assisted Milling of Carbon Fiber Reinforced Ceramic Matrix Composites [J]. Journal of Mechanical Engineering, 2024, 60(9): 26-56. |
[2] | WU Jie, DANG Jiaqiang, LI Yugang, CHEN Dong, AN Qinglong, WANG Haowei, CHEN Ming. Study on Strengthening Mechanism and Anti-fatigue Performance of Stress Ultrasonic Rolling [J]. Journal of Mechanical Engineering, 2024, 60(9): 127-136. |
[3] | ZHENG Kaikui, ZHAO Xinzhe, MOU Gang, REN Zhiying. Surface Quality, Friction and Wear Properties of TC11 Titanium Alloy Strengthened Using Ultrasonic Rolling [J]. Journal of Mechanical Engineering, 2024, 60(9): 137-151. |
[4] | LI Jicheng, CHEN Guangjun, XU Jinkai, YU Huadong. Study on Material Damage Mechanism and Surface Quality of C/SiC Composites by Laser-ultrasonic Hybrid Micromachining [J]. Journal of Mechanical Engineering, 2024, 60(9): 189-205. |
[5] | LI Han, ZHANG Cheng, CHEN Jie, AN Qinglong, CHEN Ming. Material Removal Mechanism and Evaluation of Machined Surface Quality of SiCf/SiC Composites by Laser Ablation-assisted Milling [J]. Journal of Mechanical Engineering, 2024, 60(9): 206-217. |
[6] | LIU Yinshui, WANG Zhen, ZHU Senlin, SUN Ling, WEI Qiang, ZHOU Xinping, CUI Yan, WU Defa. Research on the Infrared Cooling Characteristics of Composite Nozzle with Water Mist and Water Curtain [J]. Journal of Mechanical Engineering, 2024, 60(8): 320-328. |
[7] | JIAN Wenxuan, CONG Mengqi, LEI Weining. Research Progress of Magnesium Matrix Composites Based on Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(8): 48-64. |
[8] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[9] | JIANG Fei, ZHAO Shengdun, FAN Shuqin, WANG Kexin, CHEN Chao. Research on Symmetrical Rib Stripping and Rolling Composite Process and Its Equipment [J]. Journal of Mechanical Engineering, 2024, 60(8): 132-142. |
[10] | XIE Chenyang, HUANG Jiao, XIAO Guangming, ZHANG Xianjie, WANG Junbiao, LI Yujun. A Algorithm to Generate Representative Volume Elements for Unidirectional Composites Considering Fiber Misalignment [J]. Journal of Mechanical Engineering, 2024, 60(8): 186-195. |
[11] | TAO Liang, TANG Yu, LI Yuanqiang, ZHANG Dashan, ZHANG Xiaolong. Design of Intelligent Tire Development Platform with Multiple In-tire Sensors and Research on Tire Cornering Test [J]. Journal of Mechanical Engineering, 2024, 60(8): 245-255. |
[12] | ZHANG Bonan, HUANG Hui, WU Min. Experimental Study on Friction-induced Chemical-mechanical Composite Machining (FCMM) of 4H-SiC Single Crystal [J]. Journal of Mechanical Engineering, 2024, 60(7): 401-410. |
[13] | DENG Jianxin, YUAN Bangyi, HUANG Qiulin, DING Dukun, XIN Manyu, LIU Guangming. Review on the Key Technologies of Complex Surfaces Polishing Based on Robots [J]. Journal of Mechanical Engineering, 2024, 60(7): 1-21. |
[14] | HE Dongping, WANG Tao, LIU Yuanming, XU Huidong, WANG Jun, WANG Zhihua. Review of Theoretical Studies on Vibration in Strip Rolling Mill [J]. Journal of Mechanical Engineering, 2024, 60(7): 93-113. |
[15] | LI Jianan, WEI Zhaocheng, FENG Jingyang, WANG Xueqin. Integral Impeller Fillet-end Milling Cutter Five-axis U Cycloid Stripping Milling Path Planning [J]. Journal of Mechanical Engineering, 2024, 60(7): 212-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||